The insee package contains tools to easily download data and metadata from INSEE main database (BDM).
Using embedded SDMX queries, get the data of more than 150 000 INSEE series.
Have a look at the detailed SDMX web service page on insee.fr.
This package is a contribution to reproducible research and public data transparency. It benefits from the developments made by INSEE’s teams working on APIs.
# Get the development version from GitHub
# install.packages("devtools")
# devtools::install_github("pyr-opendatafr/R-Insee-Data")
# Get the CRAN version
install.packages("insee")
# examples below use tidyverse packages
library(tidyverse)
library(insee)
library(tidyverse)
library(insee)
= get_dataset_list()
dataset_list
=
df_idbank_list_selected get_idbank_list("CNT-2014-PIB-EQB-RF") %>% # Gross domestic product balance
filter(FREQ == "T") %>% #quarter
add_insee_title() %>% #add titles
filter(OPERATION == "PIB") %>% #GDP
filter(NATURE == "TAUX") %>% #rate
filter(CORRECTION == "CVS-CJO") #SA-WDA, seasonally adjusted, working day adjusted
= df_idbank_list_selected %>% pull(idbank)
idbank
=
data get_insee_idbank(idbank) %>%
add_insee_metadata()
ggplot(data, aes(x = DATE, y = OBS_VALUE)) +
geom_col() +
ggtitle("French GDP growth rate, quarter-on-quarter, sa-wda") +
labs(subtitle = sprintf("Last updated : %s", data$TIME_PERIOD[1]))
library(insee)
library(tidyverse)
= get_dataset_list()
insee_dataset
=
list_idbank_selected get_idbank_list("DECES-MORTALITE", "NAISSANCES-FECONDITE") %>%
filter(FREQ == "M") %>% #monthly
filter(REF_AREA == "FM") %>% #metropolitan territory
filter(DEMOGRAPHIE %in% c("NAISS", "DECES"))
= list_idbank_selected %>% pull(idbank)
idbank_selected
=
data get_insee_idbank(idbank_selected) %>%
split_title() %>%
mutate(period = case_when(DATE < "1975-01-01" ~ "1948 - 1974",
>= "1975-01-01" & DATE < "2000-01-01" ~ "1975 - 1999",
DATE >= "2000-01-01" ~ "2000 - today"
DATE
))
= seq.Date(from = as.Date("1940-01-01"), to = Sys.Date(), by = "5 years")
x_dates = data %>% pull(DATE) %>% max()
last_date
ggplot(data, aes(x = DATE, y = OBS_VALUE, colour = TITLE_EN2)) +
facet_wrap(~period, scales = "free_x", ncol = 1) +
geom_line() +
geom_point(size = 0.9) +
ggtitle("Deaths and Births in France since 1948") +
labs(subtitle = sprintf("Last update : %s", last_date)) +
scale_x_date(breaks = x_dates, date_labels = "%Y") +
theme(
legend.position = "bottom",
legend.title = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank()
)
library(insee)
library(tidyverse)
library(raster)
library(rgdal)
library(geosphere)
library(broom)
library(viridis)
library(mapproj)
= get_dataset_list()
dataset_list
=
list_idbank get_idbank_list("TCRED-ESTIMATIONS-POPULATION") %>%
filter(AGE == "00-") %>% #all ages
filter(SEXE == 0) %>% #men and women
filter(str_detect(REF_AREA, "^D")) %>% #select only departements
add_insee_title()
= list_idbank %>% pull(idbank)
list_idbank_selected
# get population data by departement
= get_insee_idbank(list_idbank_selected)
pop
#get departements' geographical limits
<- raster::getData(name = "GADM", country = "FRA", level = 2)
FranceMap
# extract the population by departement in 2020
= pop %>%
pop_plot group_by(TITLE_EN) %>%
filter(DATE == "2020-01-01") %>%
mutate(dptm = gsub("D", "", REF_AREA)) %>%
filter(dptm %in% FranceMap@data$CC_2) %>%
mutate(dptm = factor(dptm, levels = FranceMap@data$CC_2)) %>%
arrange(dptm) %>%
mutate(id = dptm)
= pop_plot %>% pull(OBS_VALUE)
vec_pop
# add population data to the departement object map
@data$pop = vec_pop
FranceMap
= function(long, lat){
get_area = areaPolygon(data.frame(long = long, lat = lat)) / 1000000
area return(data.frame(area = area))
}
# extract the departements' limits from the spatial object and compute the surface
<-
FranceMap_tidy_area ::tidy(FranceMap) %>%
broomgroup_by(id) %>%
group_modify(~get_area(long = .x$long, lat = .x$lat))
<-
FranceMap_tidy ::tidy(FranceMap) %>%
broomleft_join(FranceMap_tidy_area)
# mapping table
= data.frame(dptm = FranceMap@data$CC_2,
dptm_df dptm_name = FranceMap@data$NAME_2,
pop = FranceMap@data$pop,
id = rownames(FranceMap@data))
=
FranceMap_tidy_final_all %>%
FranceMap_tidy left_join(dptm_df, by = "id") %>%
mutate(pop_density = pop/area) %>%
mutate(density_range = case_when(pop_density < 40 ~ "< 40",
>= 40 & pop_density < 50 ~ "[40, 50]",
pop_density >= 50 & pop_density < 70 ~ "[50, 70]",
pop_density >= 70 & pop_density < 100 ~ "[70, 100]",
pop_density >= 100 & pop_density < 120 ~ "[100, 120]",
pop_density >= 120 & pop_density < 160 ~ "[120, 160]",
pop_density >= 160 & pop_density < 200 ~ "[160, 200]",
pop_density >= 200 & pop_density < 240 ~ "[200, 240]",
pop_density >= 240 & pop_density < 260 ~ "[240, 260]",
pop_density >= 260 & pop_density < 410 ~ "[260, 410]",
pop_density >= 410 & pop_density < 600 ~ "[410, 600]",
pop_density >= 600 & pop_density < 1000 ~ "[600, 1000]",
pop_density >= 1000 & pop_density < 5000 ~ "[1000, 5000]",
pop_density >= 5000 & pop_density < 10000 ~ "[5000, 10000]",
pop_density >= 20000 ~ ">= 20000"
pop_density %>%
)) mutate(`people per square kilometer` = factor(density_range,
levels = c("< 40","[40, 50]", "[50, 70]","[70, 100]",
"[100, 120]", "[120, 160]", "[160, 200]",
"[200, 240]", "[240, 260]", "[260, 410]",
"[410, 600]", "[600, 1000]", "[1000, 5000]",
"[5000, 10000]", ">= 20000")))
ggplot(data = FranceMap_tidy_final_all,
aes(fill = `people per square kilometer`, x = long, y = lat, group = group) ,
size = 0, alpha = 0.9) +
geom_polygon() +
geom_path(colour = "white") +
coord_map() +
theme_void() +
scale_fill_viridis(discrete = T) +
ggtitle("Distribution of the population within French territory in 2020") +
labs(subtitle = "the density displayed here is an approximation, it should not be considered as an official statistics")
Sys.setenv(http_proxy = "my_proxy_server")
Sys.setenv(https_proxy = "my_proxy_server")
Feel free to open an issue with any question about this package using https://github.com/pyr-opendatafr/R-Insee-Data Github repository