
A Comparison of Taxonomies for Model

Transformation Languages

Gabriel Tamura1,2 and Anthony Cleve2

1 University of Los Andes, TICSw Group, Cra. 1 N◦ 18A-10, Bogotá, Colombia
2 INRIA Lille - Nord Europe, University of Lille 1, France

{gabriel.tamura,anthony.cleve}@inria.fr

Abstract. Since the introduction of the MDE/MDA/MDD ideas for
software systems development several years ago, a number of di�erent
(meta)modeling and model transformation languages have been pro-
posed. Although the OMG's QVT standard speci�cation has somewhat
stabilized the number of new model transformation languages, it is likely
that new ones will continue to appear, following di�erent paradigms and
approaches. However, the evolution towards the consolidation of models
as a unifying, foundational and consistent concept for software-intensive
system development, requires the realization of a set of ideal character-
istics for the speci�cation of model transformation languages. Several
works have been proposed for de�ning characterization and classi�ca-
tion schemes, and the set of these ideal characteristics. In this paper we
present a comparison of characterization and classi�cation schemes for
model transformation languages, and an analysis of the OMG's QVT
speci�cation with respect to this set of ideal characteristics. Although
the MOF 2 QVT speci�cation presents a good coverage of these char-
acteristics, it still lacks a formal foundation, from which it could obtain
several bene�ts.

1 Introduction

In MDE/MDA/MDD [17][25], software systems development is based on the
concept of model. A model is de�ned as an abstract representation of a system,
and, as an abstraction, it captures some characteristics of the system, while hid-
ing others. Which characteristics are captured and which are hidden or omitted,
depends on the focus or aspects in which the modeler is interested about the
system. Therefore, for a given system, there can be many models, one capturing
its visual interface, one for the constraints in its �ow of control, another one for
its security on operations, and others for capturing even nonfunctional aspects
of it, such as safety or scalability, for instance. In turn, abstract representation
of models, that is, a model of models, is called a meta-model.

Having a high level representation of one aspect of a system in independent
models, allows modelers to better reason about that particular aspect of the
system, so better designs, with better support for evolution and maintainability,
would be expected.



2 Gabriel Tamura and Anthony Cleve

However, in order for this approach of software system development to be
feasible from the industrial point of view, the designed models have to be ma-
nipulated and operated in such a way that, from them, it becomes possible to
safely derive or generate the source code and, �nally, to obtain a running appli-
cation of the system. These manipulations and operations are speci�ed in model
transformation languages.

Model transformations are thus, in the MDE/MDA/MDD approach, funda-
mental, because they make it possible, for example, on one side, to have a whole
system representation, by merging its di�erent models, and, on the other side, to
organize the system models in several levels of abstraction. As proposed by the
MDA: the top-layer captures the computational-independent model of a system,
then the next layer captures the platform-independent model, and the platform-
speci�c model is represented in the lowest layer. The ultimate objective is to
derive the system source code by successive model transformations, from the
top abstract representation, passing through the intermediate layered models.
Models in each layer add successive design and implementation details, until the
source code is produced.

The consolidation of the MOF speci�cation [22] and the subsequent QVT
RFP [27] by the OMG brought a high interest on the subject, and a consider-
able number of model transformation languages were created, with distinct ap-
proaches . The number of languages and the diversity of the approaches followed,
made it necessary to analyze the nature of model transformation languages itself
and, in consequence, several works on their characterization and classi�cation
were conducted, among them, reviews and recommendations, taxonomies and
surveys, like [8], [16], [6] and [7].

The goal of this paper is twofold: (i) to compare the characterization and
classi�cation schemes proposed in the cited works. Even though they share some
common characteristics, they di�er from each other thereby following di�erent
organization and classi�cation structures; and (ii) to compare the relative state
of realization of characteristics identi�ed as important or ideal on the MOF's
QVT transformation language.

The remainder of this paper is organized as follows: in section 2 we compare
the cited characterization and classi�cation schemes for model transformation
languages; section 3 presents an analysis of the OMG's QVT Speci�cation in
its 2005 and 2008 versions, with respect to the characteristics and classi�cation
schemes of the previous section; and section 4 concludes the paper and antici-
pates further work.

2 Characterization and Classi�cation Schemes for Model

Transformation Languages

Since the introduction of MDE/MDA/MDD, there have appeared many propos-
als of (meta)-modeling languages, like MOF (OMG) [19], ecore (Eclipse) [24],
metaGME (GME) [3], HUTN [23] and EOL (Epsilon) [14]; and even more pro-
posals for model transformation languages, like QVT [10], ATL [11], openArchi-



A Comparison of Taxonomies for Model Transformation Languages 3

tectureWare [20], Kermeta [18], YATL (Yet Another Transformation Language)
[21], VIATRA (VIsual Automated model TRAnsformations) [5], GReAT (Graph
Rewriting and Transformation Language) [1], AGG (Attributed Graph Gram-
mar System) [26] and Fujaba/TGG (Triple Graph Grammars [4].

This may resemble, at scale, the 1970's boom of programming languages era,
in which a �Babel tower� was formed with a bunch of programming languages
that, in many cases, appeared with no well-de�ned semantics or even not well
�tted-for-purpose syntax, and then shortly disappeared.

To prevent, at least in part, a similar waste of e�ort in the development
of model transformation languages, some initiatives, from the industry and the
academic worlds, identi�ed the importance of characterizing the nature of model
transformation languages. As a result, some classi�cation schemes and sets of
characteristics and features have been proposed, di�ering in some organizational
structures and characterization aspects.

In the following subsections we compare the proposals presented by:

1. The OMG MOF 2.0 QVT Submissions pre-review and recommendations to-
wards the �nal standard [8], of the Zurich and Hursley IBM Research and
Development Laboratories, which is based on a pre-review of the eight sub-
missions presented in response to the OMG's QVT RFP [27]. The paper
is presented under the practitioner and industrial-prospective perspective,
and besides unifying a set of base terminology for queries, views, and trans-
formations, makes a comparative analysis of the submissions. This analysis
has as reference a set of common transformation scenarios of the industrial
world, and the original QVT RFP requirements. The paper also highlights
characteristics of each submission and gives a set of recommendations for the
�nal QVT standard, so it does not address directly a classi�cation scheme.

2. The Taxonomy of Model Transformations [15], which resulted from the sec-
ond working group of the Dagstuhl Seminar on Language Engineering for
Model-Driven Software Development in 2005, with the participation of more
than 15 recognized authors on the subject. This is a prospective paper, that
presents a more conceptual and academic perspective about model transfor-
mation approaches and languages, gives some base de�nitions, and addresses
both the set of ideal or important characteristics of model transformation
languages, as well as a classi�cation scheme for model transformation ap-
proaches. The ideal characteristics are derived from a set of identi�ed func-
tional and non-functional requirements, whereas the classi�cation scheme is
based on the existing commonalities and variabilities of model transforma-
tion approaches, so it can be seen as a base for a taxonomy.

3. The Feature-based survey of model transformation approaches by Czarnecki
and Helsen [6]. The perspective of this paper is as an inventory of features,
rather than a prospective vision. Consequently, it presents an exhaustive
classi�cation scheme based on a feature model, that is, in terms of concrete
trees of nodes, in which every node represents possible design choices for
model transformations. It also presents the base de�nitions on the subject,
analyzes the classi�cation of several model transformation languages as well



4 Gabriel Tamura and Anthony Cleve

as their highlights and drawbacks, and gives some directions for the appli-
cability of the classi�cation scheme. However, it does not directly address a
set of ideal characteristics or decision choices.

4. The State-of-the-art on model-transformation based software development
(in french) [7], of Diaw et al. The perspective of this paper is also of the
inventory type, so it makes a compendium of the concepts of model-driven
architecture and related approaches for system development. For the model
transformation approaches, its classi�cation scheme includes several dimen-
sions or axes, and presents a characterization based on the observable prop-
erties of model transformations. The model transformation approaches are
classi�ed also in categories according to their realization, such as utilities,
libraries or languages.

The contributions and approaches followed by each of them, as well as the
corresponding structural organization of their work, are described as summaries
in the next sections, identi�ed as sources. These summaries, of course, are given
under the subjective visions of the authors of the present paper.

2.1 Source 1: The OMG MOF 2.0 QVT submissions pre-review and

recommendations.

The main reference for the analysis of characteristics presented in the IBM con-
tribution in 2003, is the OMG's QVT RFP, in its mandatory and optional re-
quirements. The mandatory requirements can be summarized as [27]:

� Transformation de�nitions shall describe relationships between a source MOF
metamodel S, and a target MOF metamodel T , which can be used to gen-
erate a target model instance conforming to T from a source model instance
conforming to S. The source and target metamodels may be the same.

� The abstract syntax for transformation, view and query de�nition languages
shall be de�ned as MOF (version 2.0) [19] metamodels.

� The transformation de�nition language shall be declarative in order to sup-
port transformation execution in an incremental way, that is, changes in a
source model may be transformed into changes in a target model immedi-
ately.

� The proposals should be implementation independent, address security issues
where needed and specify the degrees of internationalization.

The optional requirements concerns the support for:

� Bi-directionality of transformation de�nitions (ideally single bi-directional
de�nitions).

� Mechanisms for reuse and extension of generic transformation de�nitions.
� Traceability of transformation de�nitions/executions.
� Transactional de�nitions to specify which parts of a transformation de�nition
are identi�ed as suitable for commit or rollback during execution.



A Comparison of Taxonomies for Model Transformation Languages 5

Based on the commonalities of the submissions and the reference set of trans-
formation scenarios, the IBM contribution identi�ed some additional require-
ments and proposed 12 recommendations. The additional requirements, which
were supplemented with a benchmark for bidirectional transformations of Kent
and Smith [13] are in sum:

� MOF meta-modeled de�nition for the declarative language for transforma-
tion de�nitions, i.e., a transformation speci�cation should be a MOF model
itself.

� Support for N-to-M transformation de�nitions.
� Inverse transformations should be de�nable such that T−1(T (M)) = M .
� The use of additional transformation data, not contained in the source model,
received for instance as parameters, should be possible.

� Conditions on rich well-formed mappings. Mapping de�nitions should facil-
itate the (automatic) construction (derivation) of tools, which, for instance,
given source and target models and a mapping between them, decide if the
source/target pair is a valid instance of the mapping.

On the other hand, the most divergent recommendations, with respect to the
QVT RFP, can be summarized as:

� Support a hybrid language for transformation de�nitions.
� Provide a simple declarative speci�cation language, and graphical (visual)
as far as possible. In this, there should be a fair balance in expressiveness
vs. brevity, to favor the easiness in construction, comprehension, and main-
tainability.

� For the queries, provide only declarative constructions.
� Support packaging, composition and reuse of transformation de�nitions, to
specify more complex ones, and to build large transformations systems in a
well organized and maintainable way.

2.2 Source 2: The Taxonomy of Model Transformations.

The contribution of the Dagstuhl Seminar on Language Engineering for Model-
Driven Software Development in 2005 is structured around �ve fundamental
questions:

1. What needs to be transformed into what?
2. What are the important characteristics of a model transformation?
3. What are the success criteria for a transformation language or tool?
4. What are the quality requirements for a transformation language or tool?
5. Which mechanisms can be used for model transformation?

For every question, the pertaining concepts, terms, base characteristics for
classi�cation, and ideal (or most promising) choices are given.

The classi�cation scheme proposed by this source is based on the existing
commonalities and variabilities of model transformation approaches. In short,
the characteristics for its classi�cation scheme are:



6 Gabriel Tamura and Anthony Cleve

� Endogenous vs. exogenous: same or di�erent domain metamodels;
� Horizontal vs. vertical: same or di�erent levels of abstraction;
� Technological space of the source and target domains;
� Preservation: structure, behavior, correctness;
� Re-use schemes: generic, higher-order, groupings, composition, decomposi-
tion of transformations;

� Directionality and multiplicity: 1-to-1, M-to-N, mono or bidirectional;
� Declarative vs. operational.

For the set of ideal characteristics, or most promising options, the paper iden-
ti�es a set of functional and non-functional requirements. They are summarized
as follows:

The functional requirements:

� Create/read/update/delete transformations (CRUD);
� Applicability criteria: conditions to apply a given set of transformations;
� Customisation or reuse of transformations;
� Guarantee correctness of the transformations;
� Deal with incomplete or inconsistent models;
� Group, compose and decompose transformations;
� Ability to test, validate and verify transformations;
� Specify generic and higher-order transformations;
� Specify bidirectional transformations;
� Support for traceability and change propagation.

The non-functional requirements:

� Usability and usefulness: useful, in the sense that it has to serve a practical
purpose; usable, in that it should be intuitive and e�cient in its use.

� Verbosity versus conciseness, in the same sense as in the IBM contribution.
� Scalability.
� Standardization: conformance to other standards.

The set of characteristics identi�ed as important:

� Automation: as far as possible, manual intervention in the overall process
should be reduced to the minimum. This depends, naturally, on the kind of
transformation.

� Mechanisms for scalability and re-use: generic, higher-order, groupings, com-
position, decomposition and inheritance of transformations.

� Veri�ability, testability.
� Formal (mathematical) and sound foundation: this allows veri�cation, en-
forcement and preservation of properties such as syntactic and semantic cor-
rectness in transformation de�nitions, but also in the automation of the
transformation process itself. In this point, the paper favors declarative over
operational approaches.



A Comparison of Taxonomies for Model Transformation Languages 7

2.3 Source 3: The Feature-based survey of model transformation

approaches

The paper of Czarnecki and Helsen, 2006, presents a wide coverage of model
transformation systems and languages, with a thorough classi�cation scheme
based on a model of features [12], and on a set of so-called major categories for
model transformation approaches.

The advantage of the model of features is its conciseness and concreteness
for visually representing the design options and choices for a given domain, in
this case, model transformation approaches.

The contribution of Czarnecki and Helsen is then structured over a top-level
feature diagram, that corresponds to the �rst level of the hierarchy of their
classi�cation scheme. Then, for every major characteristic, the next level of sub-
characteristics is developed. The top-level characteristics are:

� Speci�cation: of pre- and post-conditions; executable, non-executable.
� Transformation Rules: domain languages, form and structure, application
conditions, intermediate structures, parameterization, re�ection, aspects.

� Rule Application Control: location of application (e.g. selection by pattern
matching); scheduling.

� Rule Organization: packaging, modularization and re-use mechanisms.
� Source-Target (meta)models relationship.
� Incremental; directionality; tracing: in the same sense of the two other con-
tributions analyzed in the previous sections.

With respect to the major categories for model transformation approaches,
they distinguish between model-to-text and model-to-model transformations.
The sub-categories for model-to-text, for which the output is source code, are
the following strategies:

� Visitor-based
� Template-based
� Variations or combinations of the two above

And the sub-categories for model-to-model approaches, are the following:

� Direct manipulation: based on some internal representation for models, and
a set of operations to manipulate it, in the form of APIs, for example.

� Structure-driven: based on transformation frameworks in which the designer
only speci�es the transformation rules, and the framework uses a strategy
for its application.

� Operational: similar to the direct manipulation approach, but with more
support for the transformations. In general, these approaches result from
extending (meta)modeling tools and/or combining them with enriched pro-
gramming languages.

� Template-based: use model template speci�cations with embedded metacode
(e.g. OCL variations) to evaluate the variable parts of the template instances.
Model template speci�cations are usually expressed in the concrete syntax
of the target language, closely representing the result of the transformation.



8 Gabriel Tamura and Anthony Cleve

� Relational: this category regroups declarative approaches based on mathe-
matical relations, including executable and non-executable speci�cations. In
general, the relational approaches are side-e�ect-free and, in contrast to the
imperative direct manipulation approaches, create target elements implicitly.
Relational approaches can naturally support multidirectional rules, and pro-
vides mechanisms for uni�cation-based matching and rule application based
on backtracking in its pure or domain-speci�c more e�cient versions.

� Graph-transformation: based mainly on the theoretical work on graph rewrit-
ing over extensions or variations of typed-attributed labeled graphs, as for-
mal representations of (meta)models. As noted also by the contribution of
Dagstuhl, this approach has as advantages its graphical representation of rule
transformations, which are close to the graphical representation of models,
and the well-known mathematical properties already developed in the graph
theory.

� Hybrid: this category groups approaches which result from the combination
of two or more of the previous approaches. The combination can be done in
a coarse-grained fashion, as separate components, or in a more �ne-grained
fashion, at the level of the transformation rules.

2.4 Source 4: The State-of-the-art on model-transformation based

software development

The contribution of the Diaw et al. work is structured on characteristics of
model-driven architecture and related approaches for system development, in a
comprehensive way. In this contribution, two categories of characteristics can be
identi�ed: (i) conceptual aspects; and (ii) tool classi�cation.

In the �rst category, conceptual aspects, it considers:

1. Major model transformation approaches: by direct programming, by tem-
plates and by models itself.

2. Transformation types: 1-to-1, M-to-N, in-place.
3. Transformation axis or dimensions: processes, metamodeling, parameteriza-

tion.
4. Transformation properties: reversibility, traceability, re-usability, modularity

(which ideally should be based on formal approaches).

All of these, with the exception of the transformation dimensions, are present
in di�erent categories of the contributions analyzed in previous sections, some
of them possibly with di�erent names. The di�erence in the transformation di-
mensions with respect to the other proposals, can be identi�ed as:

1. Processes: by functionally identifying the transformation in the phases or
global process of engineering. However, the sub-classi�cation characteristics
refers to the usual horizontal vs. vertical transformations.

2. Metamodeling: characterizes the role of metamodels in the transformations.
For instance, metamodels can be used as a type system, or as a base for
operations such as di�erence, merge, composition.



A Comparison of Taxonomies for Model Transformation Languages 9

3. Parameterization: it is referred to the degree in which the transformation
can be automated, on the presence of internal or external parameters.

For the taxonomy itself, the paper of Diaw et al. refers basically to a classi�ca-
tion scheme based on the characteristics of endogenous-exogenous vs. horizontal-
vertical.

In the second category, tool classi�cation, it considers more pragmatic and
implementation aspects, including the degree of coverage of the aforementioned
conceptual aspects:

1. Generic tools: by family, for example, XML based and graph based.
2. IDE integrated tools: tools which o�er a complete framework for for model

development.
3. Speci�c model transformation languages/tools: usually to be integrated in

other development frameworks.
4. Speci�c metamodeling tools: metamodeling tools in which the model trans-

formation amounts to execution of a meta-program. In general, the de�nition
of the metamodel can be made at the same level of the (meta)tools used to
manipulate it.

3 Analysis of the QVT Standard as a Model

Transformation Language

As can be evidenced by comparing the 2005 and 2008 OMG's QVT speci�cations
[28][10] with the OMG's QVT RFP, several of the recommendations analyzed in
the source contributions for the present paper, were adopted.

The main characteristics of the QVT speci�cation are:

1. MOF-metamodeled abstract syntax, with textual and graphical concrete
syntaxes.

2. Hybrid model-to-model transformation approach, distinguished from model-
to-text mechanisms, for which there is another sub-standard.

3. Adoption of OCL, a purely declarative language, for queries.
4. Incremental and multi-directional.
5. Automatic management of traceability in transformations.
6. Pattern-matching by object template expressions in relations.

The hybrid model transformation language of the MOF 2.0 QVT speci�cation
[10] follows a combined coarse-grained and �ne-grained approach, as it really
proposes three well distinguished languages: core, relations, and operational. But
in some parts of the operational language, it is possible to use combinations of
the relational or the core languages. Besides this, it allows the use of �black-box�
alternatives in these two languages.

The core and relations languages amount for the declarative part of QVT,
and they serve as a basis to de�ne the execution semantics of the imperative
part.



10 Gabriel Tamura and Anthony Cleve

3.1 The Declarative Part

The declarative part of QVT comprises the core and relations languages, each
having di�erent levels of abstraction, and thus, organized in a two layer archi-
tecture.

The core metamodel and language are de�ned by extending EMOF and OCL,
forming a low-level consistent base, which follows the recommendations of self-
de�nition properties. This combined base supports traceability in terms of ex-
plicit trace classes de�ned as MOF models, as well as automatic trace instance
creation and deletion.

The relations metamodel and language speci�cation conforms to a high-level
relations language that supports object template creation and complex object
pattern matching, in a similar way as supported in some functional object-
oriented programming languages. As it is supported by the core language, auto-
matic traceability is also supported by the relations language.

3.2 The Operational Part

MOF 2.0 QVT supports two mechanisms for using imperative styles of trans-
formation: (i) the standard Operational Mappings language; and (ii) the non-
standard Black-Box MOF Operation implementations. In QVT, each relation
de�nes a class to be instantiated to trace between model elements being trans-
formed, and which has a one-to-one mapping to an operation signature imple-
mentation.

In the operational mapping language, the model navigation must be done
explicitly, as well as the creation of model elements. For that, in terms of the
standard, it extends the declarative power with imperative constructs for �ow
of control, and with a version of OCL with side-e�ects.

3.3 Discussion

The MOF 2.0 QVT standard is the result of an evolution of several years, in
which, directly or indirectly, the model-driven community has participated. Proof
of this are the analyzed contributions themselves, and the changes that the
standard has experimented since its original RFP.

In this evolution, which is representative of the evolution of the model trans-
formation languages, the relation between theoretical computer science and soft-
ware engineering has played a signi�cative role. In the last years, there have been
published many works on, for instance, the application of graph theory, graph
grammars and graph rewriting to the speci�cation of (meta)models and model
transformation. In particular, this relation can be drawn from the analogy with
the evolution of programming languages, whose speci�cation started with intu-
itive approaches for structural and behavioral de�nitions. Then, a formal and
sound theory of programming languages was developed, based on the Chomsky
hierarchy [2]. This theory provided formal notations for the de�nition of any
textual programming language, in terms of its lexical and syntactical rules of



A Comparison of Taxonomies for Model Transformation Languages 11

formation, and mechanisms for de�ning its meaning, via operational or denota-
tional semantics. Moreover, the equivalence of these notations with well known
computational structures and their corresponding formal properties allowed a ro-
bust and safe automatic generation of considerable parts of the implementation
of programming languages.

From the analysis that we have made in sections 2 and 3, we can observe
that the MOF 2.0 QVT standard presents a good coverage of the characteristics
that were identi�ed as ideal or important by the contributions considered, but
it still lacks a formal foundation for its structural de�nition and its semantics.
As happened in the programming languages evolution, a formalism based on at-
tributed grammars allowed not only the safe automation of program translation,
but also to raise the level of reasoning about language design.

A second instance worth to discuss in this evolution, though not as funda-
mental as the former one, is related to the graphical vs. textual notation for
transformation de�nitions. As noted by several works, like [9] and others, there
are arguments for and against to the graphical vs. visual dichotomy. On one
hand, there is a clear consensus about the advantages of the visual speci�ca-
tion of (meta)model structures. This consensus is based mainly on two factors:
(i) it is easier and faster for a designer to understand a visual representation
of a model structure and the relationships among its parts; and (ii) there are
automated tools that help designers to specify the kind of structures and the
intra/inter-relationships among structural parts of models with minimum e�ort.
On the other hand, there are the positions about the expressiveness of the textual
notations, for which, in some cases, are said to be richer than the graphical ones.
This is a controversial issue, which is related to the usability of the notation,
and of course, to the level of training of the user. Nonetheless, it would appear
that, having a graphical notation for (meta)model de�nitions, the natural option
would be to have also a graphical notation for model transformation de�nitions.

Aside from the discussion, this dichotomy is resolved in the MOF 2.0 QVT
standard by supporting the two options. The textual, represented in the oper-
ational and declarative textual languages, and for the graphical, introducing a
graphical concrete syntax for the relations language.

4 Conclusions and Further Work

The big advances and the diversity of uses and applications that the MDE/M-
DA/MDD have shown in the last years that it is a promising system development
approach, which is currently evolving towards a comprehensive, more structured
and well-de�ned model-driven software engineering.

However, even though there have been several works on the �uni�cation� of
model driven concepts and de�nitions, the analysis made in this paper reveals
that di�erences still remain in the use and meaning of the terms. Moreover, for
the de�nition of model transformation languages, a key factor for the MDE/M-
DA/MDD success, there exists no general formal description language yet. And,
since model transformation languages operate on models, it would be ideal to



12 Gabriel Tamura and Anthony Cleve

have a formal language, technology independent, for de�ning also models. Hav-
ing this formal language, a metalanguage in fact, it would then be possible to
de�ne model transformation languages in a more straightforward way.

OMG's MOF and QVT are claimed to be the de facto standards, for both
the metamodeling language and for the model transformation language, and
they satis�es and ful�lls many of the requirements and important characteristics
that have been identi�ed in the contributions analyzed in the present paper.
Nonetheless, they both still lack a formal foundation for their de�nition and
semantics, a very important characteristic identi�ed in at least three of the four
contributions.

The existence of such a formalism would provide mechanisms to proof fun-
damental properties on the model transformation languages, such as correctness
and con�uence, and therefore, would enable a safer automation, of at least im-
portant parts of the transformation process. It could also serve as a sound ba-
sis for the realization of several other important identi�ed characteristics, such
as veri�cation, testing, and re-use mechanisms in terms of higher-order de�ni-
tions and other constructs. Besides this, having a common formal foundation for
(meta)model de�nition and for model transformation de�nitions should allow
to reason more consistently about the overall process of model transformation,
contributing to consolidate the MDE/MDA/MDD as a solid, unifying and foun-
dational approach to software development.

Acknowledgments

This work was carried out during the tenure of an ERCIM �Alain Bensoussan�
Fellowship Programme by the second author.

References

1. Aditya Agrawal. Graph rewriting and transformation (great): A solution for the
model integrated computing (mic) bottleneck. Automated Software Engineering,
International Conference on, 0:364, 2003.

2. Alfred V. Aho and Je�rey D. Ullman. The theory of parsing, translation, and
compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972.

3. Jean Bézivin, Christian Brunette, Régis Chevrel, Frédéric Jouault, and Ivan
Kurtev. Bridging the generic modeling environment (gme) and the eclipse modeling
framework (emf). pages 1�9, 2005.

4. Sven Burmester, Holger Giese, Jörg Niere, Matthias Tichy, Jörg P. Wadsack,
Robert Wagner, Lothar Wendehals, and Albert Zündorf. Tool integration at the
meta-model level: the fujaba approach. STTT, 6(3):203�218, 2004.

5. György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Pataricza,
and Dániel Varró. Viatra " visual automated transformations for formal veri�cation
and validation of uml models. In ASE '02: Proceedings of the 17th IEEE interna-
tional conference on Automated software engineering, page 267, Washington, DC,
USA, 2002. IEEE Computer Society.



A Comparison of Taxonomies for Model Transformation Languages 13

6. Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transfor-
mation approaches. In IBM Systems Journal, volume 45, pages 621�645. 2006.

7. Samba Diaw, Redouanne Lbath, and Bernard Coulette. Etat de l'art sur le
développement logiciel basé sur les transformations de modèles. Technical report,
University of Toulouse 2, 2009.

8. Tracy Gardner, Catherine Gri�n, Jana Koehler, and Rainer Hauser. A review of
OMG MOF 2.0 Query / Views / Transformations Submissions and Recommenda-
tions towards the �nal Standard, July 2003.

9. Roy Grønmo, Birger Møller-Pedersen, and Gøran K. Olsen. Comparison of three
model transformation languages. In ECMDA-FA '09: Proceedings of the 5th Eu-
ropean Conference on Model Driven Architecture - Foundations and Applications,
pages 2�17, Berlin, Heidelberg, 2009. Springer-Verlag.

10. The Object Management Group. Meta object facility (mof) 2.0 query/view/trans-
formation. Speci�cation Version 1.0, Object Management Group, April 2008.

11. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick Val-
duriez. Atl: a qvt-like transformation language. In Peri L. Tarr and William R.
Cook, editors, OOPSLA Companion, pages 719�720. ACM, 2006.

12. Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-oriented domain analysis (foda) - feasibility study. Technical
report, The Software Engineering Institute, 1990.

13. Stuart Kent and Robert Smith. The bidirectional mapping problem. In In Pro-
ceedings of the UNIGRA'03, Uniform Approaches to Graphical Process Speci�-
cation Techniques (Satellite Event for ETAPS 2003), volume 82, pages 151�165.
Electronic Notes in Theoretical Computer Science, June 2003.

14. Dimitrios Kolovos, Richard Paige, and Fiona Polack. The epsilon object language
(eol). volume 4066, pages 128�142. 2006.

15. Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. 04101 discussion � a taxon-
omy of model transformations. In Jean Bezivin and Reiko Heckel, editors, Language
Engineering for Model-Driven Software Development, number 04101 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2005. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

16. Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electronic
Notes in Theoretical Computer Science, 152:125 � 142, 2006. Proceedings of the
International Workshop on Graph and Model Transformation (GraMoT 2005).

17. Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. Object Manage-
ment Group, Framingham, Massachusetts, June 2003.

18. Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving executabil-
ity into object-oriented meta-languages. In in: International Conference on Model
Driven Engineering Languages and Systems (MoDELS), LNCS 3713 (2005, pages
264�278. Springer, 2005.

19. OMG. Meta object facility (mof) core speci�cation version 2.0. Technical Report
formal/06-01-01, January 2006. OMG Available Speci�cation.

20. openArchitectureWare. openarchitectureware user guide version 4.3.1. pages 1�
257, 2008.

21. Octavian Patrascoiu. Yatl: Yet another transformation language. In University of
Twente, the Nederlands, pages 83�90, 2004.

22. John D. Poole. Model-driven architecture: Vision, standards and emerging tech-
nologies. In ECOOP 2001, Workshop on Metamodeling and Adaptive Object Mod-
els, April 2001.



14 Gabriel Tamura and Anthony Cleve

23. Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona Polack. Con-
structing models with the human-usable textual notation. In Krzysztof Czarnecki,
Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus Völter, editors, MoDELS,
volume 5301 of Lecture Notes in Computer Science, pages 249�263. Springer, 2008.

24. Bernhard Schätz. Formalization and rule-based transformation of emf ecore-based
models. pages 227�244, 2009.

25. Douglas C. Schmidt. Model driven engineering. pages 25�31. IEEE, 2006.
26. Gabriele Taentzer. AGG: A graph transformation environment for modeling and

validation of software. In Proc. Applications of Graph Transformations with In-
dustrial Relevance (AGTIVE), volume 3062 of Lecture Notes in Computer Science,
pages 446�453. Springer-Verlag, 2004.

27. The Object Management Group. Request for Proposal: MOF 2.0 Query / Views
/ Transformations RFP. pages 2�32, 2002.

28. The Object Management Group. MOF QVT Final Adopted Speci�cation, 2005.


