See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/295072411

ResearchGate

A Framework for the Generation and Management of Self-Adaptive Enterprise

Applications

Conference Paper - September 2015

DOI: 10.1109/ColumbianCC.2015.7333412

CITATIONS
3

4 authors, including:

Hugo Arboleda
University ICESI

50 PUBLICATIONS 137 CITATIONS

READS
44

Gabriel Tamura
University ICESI

48 PUBLICATIONS 601 CITATIONS

SEE PROFILE SEE PROFILE
Some of the authors of this publication are also working on these related projects:
Project SHIFT: A Framework for the Generation and Management of Self-Adaptive Enterprise Applications View project

Project AMPLE -- Aspect Oriented, Model Driven, Software Product Lines View project

All content following this page was uploaded by Andrés Felipe Paz on 19 February 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/295072411_A_Framework_for_the_Generation_and_Management_of_Self-Adaptive_Enterprise_Applications?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/295072411_A_Framework_for_the_Generation_and_Management_of_Self-Adaptive_Enterprise_Applications?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/SHIFT-A-Framework-for-the-Generation-and-Management-of-Self-Adaptive-Enterprise-Applications?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/AMPLE--Aspect-Oriented-Model-Driven-Software-Product-Lines?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hugo_Arboleda?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hugo_Arboleda?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_ICESI?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hugo_Arboleda?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabriel_Tamura?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabriel_Tamura?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_ICESI?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabriel_Tamura?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andres_Paz5?enrichId=rgreq-abd987a7827d071e514561a67dd31da3-XXX&enrichSource=Y292ZXJQYWdlOzI5NTA3MjQxMTtBUzozMzA2OTExODAwMjM4MDhAMTQ1NTg1NDMyOTE4OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Framework for the Generation and Management
of Self-Adaptive Enterprise Applications

Hugo Arboleda*, Andrés Paz', Miguel Jiménez* and Gabriel Tamura®
Universidad Icesi, I2T Research Group
Cali, Colombia
{ *hfarboleda, Tafpaz, imajimenez, § gtamura } @icesi.edu.co

Abstract—Demand for self-adaptive enterprise applications has
been on the rise over the last years. Such applications are
expected to satisfy context-dependent quality requirements in
varying execution conditions. Their dynamic nature constitutes
challenges with respect to their architectural design and devel-
opment, and the guarantee of the agreed quality scenarios at
runtime. In this paper we present the constituting elements of
SHIFT, a framework that integrates (i) facilities and mechanisms
for managing self-adaptive enterprise applications, (ii) automated
derivation of self-adaptive enterprise applications and their
respective monitoring infrastructure, and (iii) decision support
for the assisted recomposition of self-adaptive applications.

Index Terms—Self-adaptive enterprise applications, software
product lines, component configurations.

I. INTRODUCTION

Enterprise applications (EAs) are intended to satisfy the
needs of entire organizations and usually involve persistent
data, concurrent user access to the information and several
user interfaces to handle the big amount of data requested.
They live in dynamic execution contexts and are no longer
isolated but instead interacting with other systems. Their
dynamic nature implies that they are constantly under the
influence of external stimuli (i.e. disturbances) from various
sources inside or outside the system scope that may affect their
behaviour or the levels at which they satisfy agreed quality.
Regardless of the intrinsic uncertainty of disturbances and their
possible sources, EAs still have to fulfill the customers’ quality
agreements. This has generated a growing interest regarding
support of infrastructures for autonomic adaptation of EAs, as
well as flexible architectural designs conceived for allowing
recomposition at runtime.

In this paper we present preliminary results regarding our
SHIFT framework, which provides (i) facilities and mecha-
nisms for managing self-adaptive enterprise applications based
on the adaptation feedback loop of the DYNAMICO ref-
erence model [1], (ii) support for automated derivation of
self-adaptive enterprise applications considering possible func-
tional, quality and monitoring variations, and (iii) automated
reasoning at runtime regarding context- and system-sensed
data to determine and apply necessary system adaptations,
considering deployment and undeployment tasks. SHIFT’s
constituent elements are at different stages of development;
throughout this paper we specify their current states.

The remainder of this paper is organized as follows. Section
II introduces the background and motivation. Section III pro-

vides a general description of the SHIFT framework. Section
IV presents the mechanisms for assisted derivation of applica-
tions. Section V describes our concrete implementation of the
architecture for managing self-adaptive enterprise applications.
Section VI presents our adaptation planning strategy based
on automated reasoning. Section VII sets out conclusions and
outlines future work.

II. BACKGROUND AND MOTIVATION

Current approaches implement dynamic adaptation of ser-
vice compositions at the language level [2], [3], [4], or using
models at runtime [5], [6], [7], [8]. The first ones can be
complex and time-consuming, and with low-level implemen-
tation mechanisms. Our work is related to approaches that
use models at runtime. Model-based approaches for dynamic
adaptation implement, tacit or explicitly, the MAPE-K refer-
ence model [9] that comprises five elements: (i) a Monitor,
(i1) an Analyzer, (iii) a Planner, (iv) an Executor, and (v) a
Knowledge base.

The recent work of Alferez et al. [10] summarizes good
practices implementing the MAPE-K reference model and
gives implementation details about reconfiguration mecha-
nisms. They center their attention on service recomposition at
runtime using (dynamic) product line engineering practices for
assembling and redeploying complete applications according
to context- and system-sensed data. Model-based approaches
for dynamic adaptation of service compositions (e.g., [10],
[5], [11] do not consider changing requirements over SCA
composites or EJB models. This triggers new challenges
given the complexity of deployment at the stage of adapting
composites and EJB bindings. The work of van Hoorn et al.
[12] gives an adaptation framework operating over component-
based software systems. Their proposal remains at a high
level without working with specific component models. Their
framework is centered around component migration and load
balancing, while our interest is component recomposition.

The work of Cedillo ef al. in [5] is also closely related
to ours. They propose a middleware for monitoring cloud
services defined around a monitoring process that uses mod-
els at runtime capturing low- and high-level non-functional
requirements from Service Level Agreements (SLAs). Their
middleware only provides a partial implementation of the
MAPE-K reference model, specifically of the monitor and
analyzer elements. Their proposal derives the monitoring code

from the input model at runtime. The monitoring code is used
by the middleware during the monitoring process. Heinrich et
al. [11] also work around monitoring cloud applications. how-
ever, they are only concerned with triggering change events
when the observation data model is populated at runtime.

Other approaches lack support for assisted derivation of
monitoring infrastructures, which is important in order to
manage reference architectures that prevent the infrastructure
from introducing considerable overhead in the system’s regular
operations. Assisted derivation of monitoring infrastructure
also guarantees relevance of the complete self-adaptive archi-
tecture in changing context conditions of system execution [1].

In previous work, we proposed independent approaches and
implementations in the contexts of the engineering of highly
dynamic adaptive software systems with the DYNAMICO
reference model [1], quality of service (QoS) contract preser-
vation under changing execution conditions with the QOS-
CARE implementation [13], model-based product line engi-
neering with the FIESTA approach [14], [15], [16], automated
reasoning for derivation of product lines [17], and the recent
(unpublished) contributions regarding quality variations in the
automated derivation process of product lines [16]. The SHIFT
framework is motivated by the required integration of all
these efforts in a move to approach automation and quality
awareness along the life cycle of enterprise applications. With
SHIFT we are currently focused in the design, development,
deployment and operation stages of the life cycle. The remain-
ing stages (e.g., testing, maintenance/evolution) are part of our
ongoing research work.

III. FRAMEWORK OVERVIEW

Figure 1 presents a high-level architectural view of SHIFT’s
constituting elements and their data flow. They are grouped
into 2 areas: Automated Derivation and Autonomic
Infrastructure. The Automated Derivation area
is concerned about providing support for functional and qual-
ity configuration and derivation of (i) deployable enterprise
applications components and (ii) monitoring infrastructure. In
this area we use a model to capture reference architectures
(Reference Architecture submodel) built on design
patterns and their composition, and the functional (Domain
submodel), quality (Decision Support submodel) and
monitoring (Monitoring Infrastructure submodel)
scopes of the EAs. Generated component sets and qual-
ity decision models, relating component sets with quality
scenarios, are stored in the Component and Quality
Repository, which is managed by the Knowledge
Manager element; they are an input for (re)deployment
processes.

The monitoring infrastructure is deployed as part of the
Autonomic Infrastructure area, which implements
the adaptation feedback loop of the DYNAMICO reference
model [1]. As part of the Autonomic Infrastructure
area, SHIFT considers the need for dynamically deploying and
undeploying components to realize adaptation plans. Thus,
the Planner element has to provide automated reasoning

on the dynamic creation of structural adaptation plans. In
order to obtain the best possible selection of components
when configuring an adaptation to a deployed product, we rely
on constraint satisfaction to reason on the set of constraints
defined by reachable quality scenarios configurations and their
relationships with the component sets implementing them.
Interactions between quality scenarios may occur, and since
different component sets may be available, conflicts between
component sets may arise. Through automated reasoning,
the Planner element may cope with this issue by taking
into account additional information to get the best possible
selection of component sets when determining an adaptation
plan.

Realizing an adaptation plan in the Executor element
considers transporting components from their source reposi-
tory to the corresponding computational resource, undeploying
previous versions of them, deploying them into the middleware
or application server, binding their dependencies and services,
and executing them. All of these while redirecting new re-
quests for the application’s components to the new instances
being deployed, and allowing existing requests and sessions
to terminate. In addition, if necessary, to recompile system
source code to make measurement interfaces available to the
monitoring infrastructure. Accordingly, these deployment tasks
are applied to the Monitor element to effectively ensure
dynamic quality awareness.

IV. AUTOMATED DERIVATION OF APPLICATIONS AND
MONITORS

The Automated Derivation area in Figure 1
contains a model comprised of four submodels: Reference
Architecture, Domain, Decision Support and
Monitoring Infrastructure. We have -currently
devised the first three submodels (i.e. Reference
Architecture, Domain, Decision Support),
which we detail in Figure 2 with a UML-like notation.
Subsection IV-A explains the three submodels we have
specified so far. Subsection IV-C outlines how we will
address the Monitoring Infrastructure submodel.

A. Specification and Design of Functionality and Quality

Functional Scope. The domain submodel (see Figure 2
left bottom corner) comprises an extensible metamodel for
capturing the functional scope of product lines in the context
of enterprise applications. This is based on our previous work
[16]. The metamodel captures the variability in terms of
business entities and their relationships, enabling the manage-
ment of functional variability that involves CRUD operations
over the entities, considering one-to-many and one-to-one
relationships between them.

Quality Scope. Quality variations are modeled in the
Decision Support submodel (see Figure 2 top) as quality
scenarios where variation points are the stimuli and variants
are alternative responses to a stimulus. The Reference
Architecture submodel (see Figure 2 right bottom cor-
ner) is focused on supporting the modeling of architectural

Autonomic Infrastructure Quality Configurations
Control Error
—>| Analyzer Planner
Reference Control Actions T
Clontr;)I ” Executor
npu S g Context T Quality Decision
,g 2 Disturbances Instrumented COmMponent Sets Models
S E Actions to be Deployed /
Context & Measured __V____V___ Undeployed
Data - Control ! H
—>| Monitor <—E—: Managed EA ! Knowledge Manager
VN mamommooooo-
EA Component d
Sets /
Quality
[Monitoring Infrastruct] Decision Models
onitoring Infrastructure
9 EA Component
Sets /
Decision Support)
[PP) Quality decision EA Component
Models and Quality
Domain Reference Architecture] Repository
Automated Derivation
Legend: —> Data flow

Fig. 1. High-level architectural view of the SHIFT components.

implementations for quality variations. In order to associate
architectural implementations for quality variants, we select
design patterns in their pure form or we compose them. Re-
sulting structures are documented as variable reference archi-
tecture fragments that are later composed and made concrete
during the derivation process of components and complete
applications. In that way, we compose patterns respecting a
base (common) reference architecture, over which variable
reference architecture fragments are integrated before deriv-
ing concrete implementations. By exploiting the relationships
between the Domain and Decision Support submodels,
product line engineers may accurately model the impacts
of functional variants on quality attributes, and vice versa,
when they exist. In order to manage the suitable relationships
between functional and quality variations, from our previous
work [14], [15] we consider the need of constraining the
bindings between both submodels.

The strategy is based on defining OCL restrictions for
capturing and validating constraint logic.

Designing Concrete Architectures. The Decision
Support submodel provides support for assisted reasoning
regarding achievable configurations and their interactions. Our
decision model is a collection of (partial) reachable product
configurations, expressed as sets of quality variants, and the
modeling of their impact on other configurations. The impact
of one configuration over another is expressed in terms of
promote, require, inhibit and exclude relationships. For every

pair of related configurations, a reference architecture fragment
should be associated. Such fragments model the resulting
structures and behavior that produces the composition of
patterns associated to variants involved in the related con-
figurations. Concrete architectures of reusable components
and complete applications are created as a composition of
a common reference architecture and reference architecture
fragments. Composition rules are managed in model-based
artifacts that will be introduced in the following section.

B. Component Derivation

Reusable components and complete applications result from
transforming a set of functionalities contained in a domain
model along with a configuration of quality levels into source
code. The transformation process satisfies the constraints and
conditions dictated by a common reference architecture and
the variable reference architecture fragments that contribute.
Our generation strategy is based on the delegation of respon-
sibilities for composing templates (i.e. model2text transfor-
mations) in order to weave common and variable abstract
reference architecture fragments. The common reference archi-
tecture is associated to a set of controller templates that are in
charge of orchestrating the concrete architecture composition.
Such controllers know the specific point where a contribution
is needed, plus the concrete contribution it requires according
to possible variants. Thus, controllers delegate the code dec-
laration to contributors, which are concrete Java classes able

Decision support

v
| Quality attribute I—Ql Quality model |

| Decision model Configuration

Represents | 1
view of
Represented
b N
* 1.7
——@| Scenario Response alternative I<
1
Supports | 1..*
1 P Component set
1 1
| Environment || Stimulus |7 1 Tactic
I Supported by
+| involves « | Triggers |Pattern catalog |‘-(—>| Pattern I—
\/ \} *
1. 1.% A .

Association

Domain

| Software reference architecture fragment |

*

| Pattern composition repository |

Reference architecture

Fig. 2. Model for the derivation of component sets.

to return final source code or delegate on other contributors
the responsibility of returning required source code. The
generation process also creates templates and contributors for
quality variations and related reference architecture fragments.
We developed a common library as tool support for describing
and weaving required compositions. The library includes a
language for describing the required composition, and also
includes an engine for weaving code fragments. Currently, we
generate JEE7 components under the EJB 3.2 specification.
The generation of SCA composites is under development.
The specification, design and derivation of quality-concerned
enterprise application is part of our recent (unpublished) work
available in [16].

C. Specification and Derivation of Monitoring Infrastructure

In SHIFT, the specification and generation of monitoring
components, deployable at runtime, is performed through
PASCANI. PASCANI is a Domain Specific Language (DSL)
we are currently developing that allows defining two types of
components: monitor probes (implemented either as an EJB or
SCA component) and monitors (implemented as a SCA com-
ponent). The first are introduced into the system, binding them
appropriately and acting as a sensor, therefore allowing to mea-
sure actual service executions. Thus, the DSL allows system
administrators to monitor components that were not considered
to be monitored before the initial system deployment. The

second contain the necessary logic to abstract single context
events (i.e. events arising from monitor probes) into complex
and relevant monitoring data to be analyzed by the Analyzer
and other components (e.g., log components and monitoring
dashboards). Both monitor probes and monitors are supplied
with standard traceability and controllability mechanisms to
(i) prevent the monitoring infrastructure from introducing
considerable overhead in the system’s regular operations, and
(i1) feed knowledge sources with relevant monitoring data.
Controlling the produced monitoring components is important
when the system reaches critical quality levels, given that it
can end up breaching quality agreements or overusing system
resources.

The interaction between probes and monitors is event-based,
and is specified in a single source file. Monitoring specifica-
tions can be parametrized and derived in an automated way
for any system component, for those quality attributes with
clear definition and already proposed metrics and measurement
methods [18]. In SHIFT’s current implementation, we have
already designed a mechanism for automatically generating
PASCANTI specifications for the performance quality attribute.
This mechanism takes place in the automated derivation phase,
and produces the monitoring specification and its correspond-
ing deployment descriptors.

One of most useful features of PASCANI is the standard

abstraction between measurement mechanisms and event-
based monitoring logic. This separation of concerns allows
PASCANTI to monitor different quality attributes, as monitor
probes implementing the necessary measurement methods
exist. In our current implementation, monitor probes to
measure performance factors are automatically generated and
inserted into the system components.

Besides monitor probes and monitors, PASCANI includes
a shared variable model containing relevant monitoring
variables holding both reference values (e.g., contracted
values in SLAs) and values describing the current state of the
system (e.g., current system throughput). Monitors and other
components can read and update these values; additionally,
they can observe changes in them, by defining events in the
monitoring specifications.

In order to monitor EAs, we consider EJB components
in our DSL specification, in a way that monitor probes can
be integrated with EJB implementations following Aspect
Oriented Programming. EJB probes communicate with SCA
monitors through Web Service bindings, accomplishing the
same functionality that SCA probes. Service interception is
realized by means of Intent composites, in FRASCATI,
and Interceptors in the GLASSFISH application server.
Regarding the adaptation of the monitoring infrastructure at
runtime, the dynamic deployment is realized by using the dy-
namic reconfiguration API in FRASCATI, and the application
versioning feature in GLASSFISH.

V. AUTONOMIC INFRASTRUCTURE

The autonomic manager, based on the MAPE-K reference
model, is the infrastructure that allows the derived EAs to
be adapted to unforeseen context changes in order to ensure
the satisfaction of agreed Service Level Agreements (SLA)
(see Figure 1). Composing this infrastructure is a Monitor
element that continuously senses relevant context data, an
Analyzer that interprets monitoring events reported by the
Monitor to determine whether the SLAs are being fulfilled,
and the Planner and Executor elements that synthesise
and realize adaptation plans to alter the system’s behavior,
either by modifying the system structure or by varying parame-
ters to reach a desired system state [9]. These four components
share relevant information through the Knowledge source
element.

Our current work considers the automated derivation of the
monitoring infrastructure that realizes monitoring elements,
comprising (i) monitor probes, attached to the Managed EA
through a non-intrusive strategy based on aspect oriented pro-
gramming, and (ii) event-based monitors that collect context
data. The Analyzer is subscribed to handle monitoring
events from Monitor elements, and is in charge of deciding
when an adaptation is needed to ensure the fulfillment of the
performance SLAsS.

Our proposed implementation for the Planner element
follows a constraint satisfaction approach to find the best

configuration of components necessary to preserve the ful-
fillment of the performance SLAs, when available. Finally,
the Executor element realizes the adaptation plan produced
by the Planner, redeploying SCA and EJB components
by means of the introspection capabilities in the FRASCATI
middleware [19] and the application versioning feature in the
GLASSFISH application server, respectively.

VI. AUTOMATED REASONING FOR COMPONENTS
DEPLOYMENT

The Planner element of the Autonomic
Infrastructure area in Figure 1 includes automated
reasoning facilities, which help designing the adaptation plans
to alter the system’s behavior by modifying its structure or
by varying parameters to reach a desired system state. In
order to obtain the best possible selection of components
to alter the system’s behavior, we use the principles of
constraint satisfaction to reason on the set of constraints
defined by reachable quality scenarios configurations and
their relationships with the component sets implementing
them.

The following are the definitions we have adapted and
established for our reasoning mechanism based on our pre-
vious work in [17]. We define a quality scenarios configu-
ration as a model consisting of a finite set of Response
Alternatives with a state of 1, if the response is unse-
lected, or 2, if the response is selected.

We relate on decision models the information of components
and variants in order to define the necessary actions to derive
deployable components in accordance with a quality scenario
configuration. Implementing a Response Alternative
in an application may often require several composed compo-
nents, thus, we refer as a component set to the set of composed
components implementing a Response Alternative. A
decision model is a finite set of decisions, where each decision
is a weighted relationship between one component set and
one Response Alternative. A decision may be 0 if the
Response Alternative does not constraint the deploy-
ment of the component set, 1 if the component set requires
the Response Alternative to be unselected, and 2 if
the component set requires the Response Alternative
to be selected.

A resolution model is a decision model instance, which
binds variability and defines how to derive one product. Reso-
lution models are the resulting adaptation plans. A resolution
model is a finite set of component set applications. The
application is not planned if the component set should not
be deployed, and planned if the component set should be
deployed. However, not every possible resolution model is a
valid adaptation plan. A valid adaptation plan must satisfy
the following constraints: A component set must be deployed
satisfying the respective planned application in the decision
model. Two deployable component sets must not exclude each
other. All applicable component sets must take into account all
the Response Alternatives’ states in the configuration.

Since many valid adaptation plans may be found, we have
formulated [17] some operations on the previous models to
provide the Planner element with additional information in
determining the best possible adaptation plan. The application
operation takes a decision model, a quality configuration
model and a resolution model to verify the resolution model’s
applicability as an adaptation plan. The possible resolutions
operation calculates all the potential resolution models from
the given quality configuration and decision models. The num-
ber of resolutions operation calculates the number of potential
resolution models from the given quality configuration and
decision models. This operation gives an indication of flexi-
bility and complexity of the decision model. The validation
operation indicates if a given decision model can provide
at least one resolution model. The flexible component sets
operation determines the component sets shared by a given
set of possible resolution models. The inflexible component
sets operation gives the opposite result of the flexible com-
ponent sets operation, i.e. the component sets unique to each
resolution model in a set of possible resolution models. The
optimum resolution operation finds the best resolution model
within a set of possible resolution models through the use of a
maximizing or minimizing function depending on whether the
greater or the least number of component sets, respectively, is
more fit to adapt the Managed EA.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented our advances on SHIFT, a
framework for the generation and management of self-adaptive
enterprise applications. We discussed SHIFT’s architecture,
which is based on the MAPE-K and DYNAMICO reference
models [9], [1]. SHIFT copes with two areas: Automated
Derivation and Autonomic Infrastructure. We
have illustrated how SHIFT considers changing requirements
over SCA composites and EJB models, and offer support
for assisted derivation of enterprise applications and moni-
toring infrastructures. We also discussed how SHIFT offers
automated reasoning as part of the Planner element in
the Autonomic Infrastructure area. The Planner
element is supported on the principles of constraint satisfaction
to find the best configuration of components necessary to
preserve SLAs. As future work, we will be working on refining
the design of the framework and completing the concrete
implementations for all the elements presented, including the
complete autonomic infrastructure and its interoperability with
JEE middlewares.

ACKNOWLEDGMENTS

This work has been partially supported by grant 0369-2013
from the Colombian Administrative Department of Science,
Technology and Innovation (Colciencias) under project SHIFT
2117-569-33721.

REFERENCES

[11 N. M. Villegas, G. Tamura, H. A. Miiller, L. Duchien, and R. Casallas,
“DYNAMICO: A reference model for governing control objectives and
context relevance in self-adaptive software systems,” LNCS, vol. 7475,
pp. 265-293, 2013.

[6]

[7]

[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

M. Colombo, E. Di Nitto, and M. Mauri, “Scene: A service composition
execution environment supporting dynamic changes disciplined through
rules,” in Proc. of the ICSOC’06. Springer, 2006, pp. 191-202.

L. Baresi and S. Guinea, “Self-supervising bpel processes,” IEEE Trans.
on Software Engineering, vol. 37, no. 2, pp. 247-263, 2011.

N. C. Narendra, K. Ponnalagu, J. Krishnamurthy, and R. Ramkumar,
Run-time adaptation of non-functional properties of composite web
services using aspect-oriented programming. Springer, 2007.

P. Cedillo, J. Gonzalez-Huerta, S. Abrahao, and E. Insfran, “Towards
Monitoring Cloud Services Using Models@run.time,” in Proceedings
of the 9th Workshop on Models@run.time, S. Gotz, N. Bencomo, and
R. France, Eds., Valencia, Spain, 2014, pp. 31-40. [Online]. Available:
http://ceur-ws.org/Vol-1270/mrt14_submission_5.pdf

R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic qos management and optimization in service-based
systems,” IEEE Trans. on Software Engineering, vol. 37, no. 3, pp. 387—
409, 2011.

D. Menasce, H. Gomaa, S. Malek, and J. P. Sousa, “Sassy: A framework
for self-architecting service-oriented systems,” IEEE Software, vol. 28,
no. 6, pp. 78-85, 2011.

B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel, A. Solberg,
V. Dehlen, and G. Blair, “An aspect-oriented and model-driven approach
for managing dynamic variability,” in Model driven engineering lan-
guages and systems. Springer, 2008, pp. 782-796.

IBM, “An architectural blueprint for autonomic computing,” IBM White
Paper, 2006.

G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz,
“Dynamic adaptation of service compositions with variability models,”
Systems and Software, vol. 91, no. 1, pp. 24-47, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.jss.2013.06.034

R. Heinrich, E. Schmieders, R. Jung, K. Rostami, A. Metzger,
W. Hasselbring, R. Reussner, and K. Pohl, “Integrating Run-
Time Observations and Design Component Models for Cloud
System Analysis,” in Proceedings of the 9th Workshop on
Models@run.time, S. Gotz, N. Bencomo, and R. France, Eds.,
Valencia, Spain, 2014, pp. 41-46. [Online]. Available: http://ceur-
ws.org/Vol-1270/mrt14_submission_8.pdf

A. van Hoorn, M. Rohr, A. Gul, and W. Hasselbring, “An adaptation
framework enabling resource-efficient operation of software systems,”
in Proceedings of the Warm Up Workshop for ACM/IEEE ICSE 2010,
ser. WUP "09. New York, NY, USA: ACM, 2009, pp. 41-44. [Online].
Available: http://doi.acm.org/10.1145/1527033.1527047

G. Tamura, R. Casallas, A. Cleve, and L. Duchien, “QoS contract preser-
vation through dynamic reconfiguration: A formal semantics approach,”
Science of Computer Programming, vol. 94, pp. 307-332, 2014.

H. Arboleda and J.-C. Royer, Model-Driven and Software Product
Line Engineering, 1st ed. ISTE-Wiley, 2012. [Online]. Available:
http://www.iste.co.uk/index.php?f=x& ACTION=View&id=509

H. Arboleda, R. Casallas, and J.-C. Royer, “Dealing with Fine-Grained
Configurations in Model-Driven SPLs,” in Proc. of the SPLC’09. San
Francisco, CA, USA: Carnegie Mellon University, Aug. 2009, pp. 1-10.
D. Durdn and H. Arboleda, “Quality-driven software product lines,”
Master’s thesis, Icesi University, 2014.

H. Arboleda, J. F Diaz, V. Vargas, and J. Royer,
“Automated reasoning for derivation of model-driven spls,” in
SPLC’10 MAPLE’10, 2010, pp. 181-188. [Online]. Available:

http://splc2010.postech.ac.kr/SPLC2010_second_volume.pdf

ISO/IEC, “ISO/IEC 25000 - Guide to SQuaRE,” Tech. Rep., 2014.

L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and
J.-B. Stefani, “A component-based middleware platform for reconfig-
urable service-oriented architectures,” Software: Practice and Experi-
ence (SPE), pp. 1-26, 2012.

https://www.researchgate.net/publication/295072411

