ANTERIOR

The arrows point out the superior sagittal sinus (SSS), which you are seeing in a Iongitudinal view because the image is near the top of the head.

- What is the SSS and where
is it located?
- How does blood from the cerebral hemispheres reach the SSS?

MRI (magnetic resonance imaging)

The goal of MRI imaging is to display differences in tissue contrast in order to achieve high resolution, high contrast views of the brain and spinal cord. Unlike conventional Xrays, structures can be made to look different in MRI depending on the technique used. Just as an example, CSF appears dark in T1 images but bright (hyperintense) in T2 images. There are many different techniques that can be used to accentuate particular components of nervous tissue, and clinicians select a combination of techniques depending on the particular patient and the goal of the study.

This axial atlas is made from T1 images. In T1 images the CSF appear dark because of its water content. You can confirm this for yourself by identifying the subarachnoid space in the next image in this Atlas.

MORE INFORMATION ABOUT MRI

CSF in the subarachoid space appears dark in
T1-weighted images.
QUESTIONS:

- Does each blue arrow point to a gyrus or a
sulcus?
- Does the blue question mark indicate a gyrus or a sulcus?

ANTERIOR

POSTERIOR
The central fissure is traced by yellow dotted lines. We do not ask first-year medical students to make this identification. Using this landmark, find the precentral gyrus and postcentral gyrus on the left side of the brain where they are labeled, and right side where they are not.
-What is the functional role of the precentral gyrus?

- What is the functional role of the postcentral gyrus?

In this T1-weighted MRI Atlas:
Appearance of air, CSF, bone, and fat in this T1 MRI Atlas
Use blue arrows in this image to review the appearance of each of these components.
\square White matter is white or pale gray. (relatively higher fat/lipid content)
\square Gray matter is a darker gray (relatively higher water content)

QUESTION: Decide whether each of the red markers indicates gray matter or white matter.

Axial MRI 5

Is the corpus callosum present in this section? If not, find the first page in this atlas where you can see it clearly.

It becomes increasingly difficult to identify the central fissure in axial images showing more inferior brain regions (atlas images 7 and beyond). If this were an actual patient case in which the central fissure had to be identified with certainty, the radiologist would likely use images formatted in the sagittal plane

The thalamus is not present in this section Approximately where do you anticipate it will be located in axial images that show more inferior parts of the brain? Confirm your answer by examining pages 9 and 10 .

In these T1 MRI images, rapidly flowing

 blood does not give a signal. So arteries, veins, and dural venous sinuses are black as long as their lumen contains rapidly flowing blood. However, if blood flow is slower and more irregular (as is sometimes the case with venous flow) the signal can be a mixture of black and white densities. Finally, if there is a fresh thrombus that is completely occluding a major artery, the site of blockage can sometimes be identified by its characteristic white appearance.The small red arrow points to a circular black profile indicating a medium-size arterial branch.

ANTERIOR

At this level, the white matter lateral to the caudate and thalamus is called the corona radiata (labeled on the right side of brain). It contains thousands of axons that are traveling to or from the internal capsule.

The name corona radiata (radiating crown) describes the trajectory of these axons as they fan out to reach the lateral and medial cortical regions from which they arise or in which they synapse.
However in this image you see them collectively as a uniform-appearing white matter region

Note that the same axons are given differen descriptive names along their course. In more inferior levels (images 10, 11, 12), axons of the corona radiata will form a major part of the internal capsule (details in image 12). At more superior levels (images 8,7,6), axons of the corona radiata will form part of the centrum semiovale.

The entire thalamus is circled in this image. Please be sure that you have located it. Currently, identification of specific thalamic nuclei in MRI images isn't usual practice. However, you will probably find that you can pick out some individual thalamic nuclei because of their distinctive shapes or locations

Myelin-stained section demonstrating the same major structures shown by MRI.

The internal capsule is indicated in yellow. This white matter is made up of thousands of axons that carry information between the thalamus and cerebral cortex (thalamocortical axons and corticothalamic axons), and axons originating in the cortex that travel to subcortical structures in the brainstem (e.g., cranial nerve nuclei, griseum pontis, red nucleus, reticular formation) and the spinal cord.

In this image three regions of the internal capsule have been labeled: the anterior limb (A), the genu (G) and the posterior limb (P). QUESTION: For each region, identify the structures that are located immediately medial and immediately lateral.

Identify the caudate, putamen, globus pallidus, and internal

Name at least 3

tracts or sets of
axons that are
present in this white
matter region.
capsule. Confirm your
identifications by reviewing image 12.

QUESTION: What major artery provides most, although not all, of the blood supply to each of these structures? What specific arterial branches are involved?

ANTERIOR

The entire left thalamus is circled, mouse over its structure outline for information about the pulvinar (P) and medial dorsal nucleus (MD), two of the thalamic nuclei that are prominent at this level (outlined in right thalamus.
QUESTION: What major artery provides most, although not all, of the blood supply to the thalamus?

Name at least 2 tracts or
sets of axons that are
sets of axons that are
present in this white
matter.

छ

Branches of what one major cerebral artery supply all this cortex?

This is the location of the hippocampus, a specialized region of cortex that is rolled into the medial temporal lobe. It forms the medial wall of the inferior (temporal) horn of the lateral ventricle extending from just posterior to the amygdala all the way back to nearly the splenium of the corpus callosum.

This image shows the posterior part of the hippocampal formation. Because of its curved 3-D structure, images 15-23 will show progressively more anterior regions.

This level is quite difficult to interpret, so key structures have been labeled. Beginning anterior, the section includes the caudate (C), putamen (P), and GP (globus pallidus). Identify the anterior commissure and confirm your answer.

Surrounding the third ventricle (green arrow), are parts of the hypothalamus (H) and thalamus (T). In the posterior right thalamus, the medial geniculate nucleus is circled. The section also includes the superior colliculus (SC) of the midbrain.

The oculomotor nerve (CN3) is visible near the ventral surface of the midbrain. Identifying it is beyond the scope of most basic neuroscience courses, but if you're interested in trying, confirm your answer using the enlarged image below.
QUESTION: If the right CN3 has ceased all normal function, what signs and symptoms might you anticipate? (One reason this might occur is severe compression by an aneurysm arising from the junction of the basilar artery and the right PCA.)

The red arrow points to the pituitary stalk. The shorter green arrow indicates part of the optic chiasm (image 21 shows this relationship too).

Use this image to review what can happen if intracranial pressure is increased because of a space-filling mass such as tumor, hemorrhage or cerebral edema and the uncus (or less frequently another part of the medial temporal lobe) is pushed inferior, through the tentorial notch, causing midbrain compression.

The uncus is outlined in green on the image.
Clinical signs of uncal herniation typically include hemiplegia, a dilated and unresponsive pupil and impaired eye movements, and decreased levels of consciousness. For each, what anatomic structure is directly involved?

> Sometimes the posterior cerebral artery is compressed by uncal herniation, infarcting posterior cerebral artery territory. (Remember that the PCA has to pass upward through the tentorial notch.)
> Name at least 3 major structures that are supplied by PCA.

Pons profile: Rounded (gently indented) anterior surface, and widened 4th ventricle posterior. Circle

Three months following an ischemic stroke, a patient's neurologic exam demonstrated the following signs and symptoms:

Facial weakness on the left side that primarily involved the lower part of his face (his smile was lopsided and he had difficulty puffing out his left cheek; however he could raise his eyebrows and wrinkle his forehead evenly).
Difficulty enunciating words clearly, but no problem with language itself. (This dysarthria had improved somewhat since the time of his stroke.)
Weakness of the left arm and leg, with increased muscle tone, exaggerated biceps, triceps,
brachioradialis, patellar, and Achilles tendon reflexes, and a dorsiflexor plantar response on the left.

The remainder of the patient's neurologic exam was normal.

Explain how the brainstem lesion shown here in red explain the patient's deficits.

Can you think of a region in the cerebral hemisphere where a lesion would be likely to produce the same pattern of normal and abnormal exam findings? Can you find an image in this atlas that shows this region?

In children and young adults, the lens is elastic and its thickness can be varied so that both near and far objects can be brought into focus on the retina. When a visual object is brought closer, the ciliary muscle contracts, this releases tension on the lens so that it rounds up and becomes thicker. Which cranial nerve is responsible? What is the efferent pathway?

This image is at the anterior edge of the foramen magnum. What region of the brainstem is present? Confirm your answer.

At this level the inferior parts of the cerebellum are visible. The famous cerebellar tonsils are circled in blue. In situations where a mass lesion or enormously elevated intracranial pressure pushes the brainstem downward, the tonsils may herniate caudally through the foramen magnum. There they compress the caudal medulla, usually resulting in the patient's death because cardiac and respiratory centers in the reticular formation malfunction.

This is the level of the upper cervical spinal cord (outlined in yellow). As this is caudal to the pyramidal decussation, most corticospinal axons are located lateral (rather than
anterior), accounting for the overall shape of the cord).

The vertebral arteries travel upwards through the transverse foramina of the upper 6 cervical vertebrae. When they reach C1 they turn medially, curving around the lateral masses of the vertebra to enter the
subarachnoid space. The arteries then travel upwards through the foramen magnum into the cranial cavity, in the location shown in image 33.

