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RESUMEN
Las mallas poligonales y en par-

ticular las mallas triangulares son 

la estructura más utilizada para 

modelado en 3D. La estructura de 

datos ‘bordes directos’ es la forma 

más eficiente de representarlas y la 
subdivisión de superficies un modo 
adecuado de generarlas. Del estudio 

de subdivisión de superficies escogi-
mos el método  ‘subdivisión √3’ para 
la generación de mallas. Nuestro 

principal reto fue tomar ventaja de 

la estructura de datos ‘bordes direc-

tos’ encontrando fórmulas para una 

implementación eficiente. Decidimos 
utilizar archivos en el formato 3DS y 

convertirlos a ‘bordes directos’ para 

uso en nuestra aplicación. Probamos 

nuestro algoritmo con mallas de 

topología arbitraria y calculamos su 

eficiencia. Nuestra implementación 
será utilizada para la creación de la 

cabeza de un perro virtual. 

PALABRAS CLAVE
Malla, Computación gráfica, Subdi-
visión de superficies

ABSTRACT
Polygonal meshes and particularly 

triangular meshes are the most used 

structure for 3D modelling. The ‘di-

rect edges’ data structure is the most   

efficient way to represent them and 
subdivision surfaces is an appropri-
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ate   method to generate them. From 

a review of subdivision surfaces we 

chose the ‘√3 subdivision’ method for 
mesh generation. Our main challenge 

was to take advantage of the direct 

edges data structure and to find the 
right formulas for an efficient imple-

mentation. We decided to use files in 
the 3DS file format and convert them 
to the direct edges data structures 

for use in our application. We tested 

our algorithm with arbitrary mesh 

topologies and calculated efficiency. 
Our implementation will be used in 

the creation of a virtual dog head.

KEY WORDS
Mesh, Computer graphics, Subdivi-

sion surfaces

Clasificación Colciencias: Tipo 1
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1. INTRODUCTION
We needed an adequate method to 

represent the surface of a 3D virtual 

dog skull that will be part of a bigger 

project [1]. Our implementation of a 

parametric triangular mesh genera-

tion algorithm helped us to validate 

the technique and to confirm our 

choice. 

A surface separates the interior from 

the exterior by a boundary. In order 

to generate a mathematical surface 

we need to establish continuity and 

neighbourhood relationships between 

samples. Complex shapes require 

piecewise representations and are 

split in sub-regions each one of which 

is defined by an individual function. 
These representations are just ap-

proximations of the surface and it 

can be demonstrated from the Tay-

lor theorem that the approximation 

error in an interval h of the surface 

by a polynomial of degree p is O(h 
p+1). In order to decrease the error 

one can increase the degree of the 

polynomial or use more segments or 

sub-regions. Operations required by 

surfaces include evaluation, query 

and modification. Evaluation refers 
to the sampling of the surface and its 

attributes. Query aims to identify if a 
given point p  R3 is inside or outside 

the solid bounded by S. Modification 
refers to geometry changes such 

as surface deformations or topol-

ogy changes. There are two major 

classes of representation. Paramet-

ric representations are defined by 
a vector valued parameterization 

function (1). Implicit or volumetric 

representations are defined by a zero 
set of a scalar valued function (2) [2]. 

Parametric representations are bet-

ter for evaluation and modification, 

implicit representations are better 

for query [2]. 

f: Ω  S, where S is a surface,  Ω  R2 

and S = f (Ω)  R3.                         (1)

F: R3  R where S = { x  R3 | F (x) = 

0}.                                                 (2)

Polygonal meshes approximate a 

surface by a mesh of planar polygonal 

facets. They are low complexity repre-

sentations more efficient for render-

ing. In particular, triangular meshes 

remain the most used structure for 

3D modelling. In [3] they argue that 

quadrilaterals are better than tri-

angles capturing the symmetries of 

objects and that they are compatible 

with bi cubic patches used in com-

mercial software. However, in [2] 

they state that triangles have become 

increasingly popular because they 

allow more flexible and efficient pro-

cessing and avoid conversion errors. 

We decided to follow the approach 

from [2] and use triangular meshes. 

Additionally, we found that subdivi-

sion surfaces are an appropriate way 

to generate and create parametric 

polygonal meshes. They reduce the 

representation of a complex surface 

to a simpler control mesh that is able 

to generate refined surfaces. 

2. METHODOLOGY
In order to find an appropriate repre-

sentation, we reviewed literature on 

3D modelling. From this, we identi-

fied the advantages of using trian-

gular meshes. Also, we studied and 

created an algorithm to convert from 

the 3DS file format to the direct edges 
data structure which we found to be 

the most efficient one. Then, from 
the review of subdivision surfaces we 

chose the √3 subdivision method for 
generating the mesh. At this stage, 

Efficient Mesh Generation Using Subdivision Surfaces 
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we had to find the right formulas for 
counting elements in the mesh (i.e. 

vertices and faces) in order to create 

an efficient implementation. We cre-

ated and downloaded several input 

meshes in the 3DS format, converted 

them and tested our algorithm. The 

input meshes included closed regu-

lar surfaces, planes with boundar-

ies, surfaces with non subdividable 

polygons and the arbitrary mesh of 

a spaceship. We calculated memory 

usage, performance and element 

growth. The implementation will be 

further used in the creation of the 

virtual dog head. 

3. TRIANGULAR MESHES
Frequently, triangular meshes are 

considered as a coarse collection 

without a mathematical representa-

tion. Problems arising from a coarse 

mesh include little connectivity infor-

mation (triangle soups), inconsistent 

normal orientations, gaps, intersect-

ing patches and degenerate elements 

such as triangles with zero area. 

However, an acquired coarse mesh 

can be used as an input to produce 

an enhanced one (i.e. using subdivi-

sion surfaces) [2, 4, 5]. A parametric 

triangular mesh M can be described 

as M (P, K), where P = Set of N posi-

tions p
i
(x

i, 
y

i, 
z

i
)  R3 and K contains 

the description of the topology. Tri-

angular meshes are the most simple 

and flexible continuous surface repre-

sentation where only C0 continuity is 

required [2]. Here, complex surfaces 

are formed by triangular pieces with 

a linear parameterisation function 

with an approximation error of O 

(h2), where h is the maximum edge 

length. The valence of a vertex is the 

number of vertices in its neighbour-

hood. In semi-regular triangular 

meshes, most of the vertices have a 

valence of 6. Vertices with a differ-

ent valence are called extraordinary 

vertices.  “An important topological 

quality of a surface is whether or not 

it is two-manifold, which is the case 

if for each point the surface is locally 

homeomorphic to a disk (or a half-

disk at boundaries). A triangle mesh 

is two-manifold, if it does neither 

contain non-manifold edges or non-

manifold vertices, nor self-intersec-

tions. A non-manifold edge has more 

than two incident triangles and a 

non-manifold vertex is generated by 

pinching two surface sheets together 

at that vertex, such that the vertex 

is incident to two fans of triangles”, 

[2, p.19].

3.1. Data structures for triangu-

lar meshes. 

Efficient data structures allow local 
and global traversal of a mesh. Opera-

tions include [2]: 

• Access and enumeration of indi-

vidual vertices, edges, faces. 

• Oriented traversal of edges of a 

face (next edge in a face).

• Access to at least one face at-

tached to a given vertex. 

The direct edges data structure is the 

most efficient to deal with triangular 
meshes [2]. It is based on indices as 

references to each element where 

indexing follows rules that implic-

itly encode connectivity information 

(Table 1). Here, each edge is repre-

sented into two opposing halfedges 

consistently oriented counter clock-

wise (Figure 2). This data structure is 

only useful for triangular meshes and 

provides no explicit representation of 

edges (though it can be specialised to 
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other polygons). It groups the three 

halfedges belonging to a common 

triangle. Additional information is 

explicitly stored in arrays. For in-

stance, for each vertex, the index of 

an outgoing halfedge is stored and; 
for each halfedge, the index of its 

opposite half edge and the index of 

the vertex the halfedge points to are 

stored. Boundaries are managed with 
special negative indices that indicate 

that the edge vertex is invalid. 

4. SUBDIVISION SURFACES
Subdivision surfaces help in the 

creation and refinement of proper 
3D mesh models. They are capable 

of representing an arbitrary geo-

metrically unrestricted topology. 

They produce an efficient hierarchi-
cal structure and an object can be 

modelled as a low resolution control 

mesh from which we can generate 

new meshes by refining the previous 
one. Some subdivision methods such 

as Catmull and Clark [4] work on 

quadrilaterals or extend subdivision 

to a n-sided problem and are not re-

stricted to triangles such as Doo and 

Sabin [5, 6]. Others such as butterfly 
[4], √3 Subdivision [6] and Loop [8] 
are specialised to triangles.  [8] Has 

been widely used [9, 10, 11]. 

One can define: M0 (P0, K0) as the 

original coarse mesh (which can be 

used as the control mesh) and Mj (Pj, 

Kj) as the j times subdivided mesh. 

Indices and operation Description / calculation

f Index of a face

Get halfedge (f, i) from face number  3f + i, with i  {0, 1, 2}          (3)

h Index of a halfedge

Adjacent face from halfedge (h) h/3                                          (4)

Next halfedge (h+1) mod 3.                          (5)

Here, Pj are the mesh points at level j 

of subdivision and Kj contains the de-

scription of the topology at level j. Mj, 

with j  is the approximation of 

a B spline limit surface. A subdivision 
scheme S takes the vertices from level 

j to level j+1 so that S(K j) = K j + 1.  A 

subdivision matrix or stencil SM maps 

a mesh Mj to a topologically equiva-

lent refined mesh Mj+1. Eigenvalues 

or characteristic roots are a special 

set of scalars associated with linear 

systems of equations such as matrix 

equations. In a subdivision scheme S, 

the eigenvalues of the subdivision ma-

trix are important to determine if the 

method converges to a limit smooth 

surface. For instance, all subdivision 

schemes must guarantee adequate 

design of the SM stencil so that eigen-

values have a certain distribution and 

a continuous surface approximating 

the limit surface can be generated [7, 

9].  In SM, every row is a rule to com-

pute the position of a new vertex and 

every column tells how one old vertex 

contributes to the vertex positions in 

the refined mesh [2]. In stationary 
methods the refinement functions are 
the same for every subdivision level. 

However, different rules are applied 

to define sharp features, creases or 
to deal with extraordinary vertices 

[9]. Also, stop conditions can be used 

for adaptive refinement [7]. In some 
methods old vertices are repositioned 

for smoothing [7]. 

Table 1. The direct edges data structure

Efficient Mesh Generation Using Subdivision Surfaces 
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4.1. Subdivision techniques for 
triangular meshes

Butterfly subdivision [4, 9] converts 
each face into four using edge verti-

ces. Artefacts and discontinuities are 

produced in vertices with valence dif-

ferent from 6. For example, it never 

produces smooth surfaces on extraor-

dinary vertices and incorrect smooth 

regions can appear near high valence 

vertices due to eigenclustering (more 

than one eigenvalue per matrix).  It 

is based on dyadic split (divide every 

edge in two) and does not produce C2 

continuity. The modified butterfly 
deals with artefacts of the original 

butterfly [4]. It approximates the 

behaviour of a C2 surface based on 

dyadic split. Here, eigenclustering 

is avoided. Loop subdivision [9] is 

one of the simplest C1 subdivision 

schemes. Here, stencils are smaller 

and convergence rate is better than 

in modified butterfly. It is based on 
dyadic split and is not C2 at extraor-

dinary vertices. The scheme does not 

look smooth for large valences, due to 

eigenclustering. The modified Loop 
[9, 12] increases the stencil in a mini-

mal way around a vertex and avoids 

eigenclustering. Here, vertices have 

better structure at extraordinary 

points. However, ripples appear. The 

ternary Loop subdivision [13] uses 

three stencils. It achieves bounded 

curvature, manifold support, and 

convex Hull. It is C2 continuous. 

However, No rules have been defined 
to deal with boundaries or with sharp 

features.

√3 Subdivision [7] is a stationary 
subdivision scheme with slower topo-

logical refinement with trisection of 
every original edge (every two steps). 

It inserts a new vertex at the centre of 

every face (Figure 1a and 1b). Then, it 

creates the new faces (Figure 1c) and 

flips every original edge (Figure 1d). 
To do that, it uses simple stencils of 

minimum size and maximum symme-

try. Here, a new vertex is calculated 

as the average of the three old ones 

(a new vertex only affects one face). 

Then, the old ones are relaxed using 

(6). The scheme uses a generation 

index to perform adaptive refinement 
and allows sharp feature lines. It is 

C2 continuous except at extraordi-

nary points. All new vertices have 

valence 6 and the valence of the old 

ones is not changed.  We chose this 

method because it produces more lev-

els of subdivision with lower number 

of triangles and simpler rules.

( ) ∑
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S(p) = relaxation stencil for vertex 

p. 
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_
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n = valence

Figure 1. a) Original mesh. b) Middle point. c) Split triangles. d) Flipping 
edges. [adapted from 7, p.104]
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5. IMPLEMENTATION

5.1. Converting from 3DS to 
Direct Edges

Using a 3DS format loader [14] we 

created an algorithm that converts a 

3DS mesh into a Direct Edges data 

structure. In our algorithm, only the 

vertex list and faces descriptions 

were processed preventing unneces-

sary duplication. Our application 

opens the 3DS file. Next, it reads 
the vertices and adds them to a ver-

tex list. Then, it reads the faces and 

adds them to a face list assigning 

the proper vertex indices. It creates 

the halfedges list from the faces list. 

For each one it assigns the vertex it 

points to and, for each vertex it as-

signs one outgoing halfedge. Next, for 

each halfedge it finds and assigns its 
opposite. Finally, it detects boundary 

vertices and saves the data. 

5.2. √3 subdivison surfaces 
using the Direct Edges Data 

Structure

In our implementation a main subdi-

vision cycle calculates the subdivision 

surface until it reaches the number 

of levels defined by the user. At each 
level, the algorithm performs three 

tasks. First, it calculates the new 

vertices in each face (Table 2). Here, 

if it is a non boundary subdividable 

face or a boundary face in even level 

(Figure 2c), the mid point is obtained 

and three faces are created. If the 

face is not subdividable then one face 

is recreated (Figure 2a). If the face 

is a boundary face and the level of 

subdivision is odd, two new vertices 

are calculated and three faces are 

created (Figure 2d). After the faces 

have been subdivided a mesh similar 

to the shown in Figure 1c is produced. 

The next task (Table 2) is to flip the 
edges in each face of the new sub-

divided mesh. Here, the edges are 

flipped only if the face and its mate 
are sub dividable and non boundary 

or, when the face belongs to a bound-

ary at an odd level of subdivision. 

After the edges have been flipped a 
mesh similar to the shown in Figure 

1d is produced.  The final task is to 
re- position the three old vertices in 

each face. Calculations are done tak-

ing care of avoiding boundary verti-

ces, because these can cause visible 

discontinuities. Here, the calculation 

of the vertex’s neighbourhood is re-

quired (Table 2). 

5.2.1. Memory allocation

Every time the calculations for a new 

level of subdivision start, the memory 

is allocated according to the new 

needs. The result of the last subdivi-

sion step is stored in a file that is used 
as a starting point for the next level. 

The use of a file eliminated the need 
of using heavy intermediate memory 

objects. At level 0, memory for the 

control mesh is allocated according 

to the number of vertices, faces and 

halfedges which were defined as in 
Table 3. Memory for subsequent 

levels of subdivisions is calculated 

according to (7) (8) and (9). 

NV = OVN + NSF + 2NBF  (7)

NF = (ONF – NNF) 3 + NNF (8)

NHE = ((ONF – NNF).3.3) + 3NNF 

(9)

NV = Number of vertices

NF = Number of faces

NHE = Number of halfedges. For 

each face 3 halfedges

OVN = Old number of vertices

Efficient Mesh Generation Using Subdivision Surfaces 



118 SISTEMAS 
& TELEMÁTICA Vol. 6 No. 12 • Julio - Diciembre de 2008

Step1: finding new vertices Step2: flipping edges

For AllFaces
    If FaceNotAtBoundary
       If Face Subdividable
          ComputeMidPoint and Split
        Else
           RecreateFace
    Else 
        If FaceAtBoundary
           If EvenLevel
               If Subdividable
                 ComputeMidPoint and Split
               Else
                   RecreateFace
            Else
                If Subdividable
                   CreateFacesAtBoundary
                Else
                   RecreateFace

For AllFaces
   If FaceNotAtBoundary
       If Face Subdividable
          SwapFace
        Else
           RecreateFace
    Else 
         If OddLevel
             If Subdividable
                SwapAtBoundary

Step 3: old vertices re positioning Neighbourhood calculation

For AllFaces
     If VertexNotAtBoundary
         CalculateNeighbourhod
         RePosition Accoridng to (3)

Find OutgoingHalfedge
    AverageFirstVertex
    Increment Neighbourhood size
    Repeat 
       Get OppositeHalfEdge
       Get NextHalfedgeInRing adding 1
       Add vertex to average
       Increment Neighbourhood size
    Until RingComplete or Boundary or     
    Distortion

Table 2. Steps in subdivision and neighbourhood calculation

Vertex

(160 bits)

Float x, y, z

Int Outgoing 

Int Boundary

3D position.

For each vertex, store index of outgoing halfedge. 

Indicate if it is a boundary vertex.

Polygon

(224 bits)

Int a, b, c, mate 

Int subdividable 

Int iBoundFace: 

Int iNonSubFaces 

For each polygon store vertex indices, mate.

Equals 1 when subdividable. 

Number of boundary faces before this.

Number of non subdividable face before this.

Halfedge

(64 bits)

Int oppositeHalfedge Int 

toVertex 

 

For each halfedge store: 

Index of opposite halfedge.

Index of vertex the halfedge points to. 

Table 3. Halfedge elements implementation
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NSF = Number of sub dividable faces. 

One new vertex for each face.

NBF = Number of boundary faces. 
Two new vertices for each face.

ONF = Old number of faces (each sub 

dividable one produce 3 new ones)

NNF = Number of non sub dividable 

faces. 

5.2.2. Assigning halfedges and 

counting

Our main challenge was to keep track 

of the halfedges after each task. As-

signing proper halfedges numbers is 

very important before the flipping 
operation, otherwise the mesh will 

be corrupted. The naive solution is to 

create costly loops to find and assign 
halfedge numbers. However, count-

ing helps to use the direct edges data 

structure efficiently.  

Figure 2. a) Non subdivided face. b) New vertices at boundary. c) Subdi-
viding a regular face. d) Subdividing a boundary face in odd step. 

The first and easiest thing is to cal-
culate the interior halfedges using 

formula (3). For example, a face F has 

three interior halfedges. These are 

assigned counter clock wise starting 

from vertex a. For instance:

• Halfedge 0 goes from a to b. 

• Halfedge 1 goes from b to c.

• Halfedge 2 goes from c to a. 

Figure 2a shows the halfedge num-

bers for face F = 0. In the regular case 

(Figure 2c) an old face produces 9 new 

halfedges. Assuming face [a, b, n] as 

face 0, [b, c, n] as face 1 and [c, a, n] as 

face 2, the halfedge values are easily 

obtained with (3). At boundaries (Fig-

ure 2d) faces are created differently. 

Here, we assumed the leftmost face 

as face number 0, the middle one as 

face 1 and the rightmost as face 2. 

Efficient Mesh Generation Using Subdivision Surfaces 
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Let G be our face. Finding the values 

for the opposite halfedges for face G 

requires proper counting. Let us sup-

pose that face F (before subdivision) 

is the neighbour face that contains 

the halfedge which is opposite to G 

(O
0
, O

1, 
O

2
 in Figure 2). The 0 halfedge 

of face F can be obtained from (10).

HE = ((F – N)  9) + 3N (10)

Where

HE = Halfedge number.

F = Current face number.

N = Number of non sub dividable 

faces before F.  

However, we need to identify which 

halfedge from F we are next to. In or-

der to do this, we need to know if the 

opposite (O) halfedge (O
0
, O

1
 or

 
O

2
) is 

the number 0, 1 or 2 in F. Here:

• If O = 3F then the O is F’s number 

0. 

• If O = 3F+1 then the O is F’s num-

ber 1.  

• If O = 3F+2 then the O is F’s num-

ber 2. 

Once we have the O number from face 

F, as new halfedges will be created, 

we need to identify what will be the 

halfedge number after F has been 

subdivided. There are several cases:

• F is a sub dividable face or F is 

a boundary face in even level of 

subdivision. If G is opposite to F’s 

0 halfedge, then O = HE. If G is 

opposite to F’s 1 halfedge, then O 

=HE+3.  If G is opposite to F’s 2 

halfedge, then O = HE+6. 

• F is a non sub dividable face. If G 

is opposite to F’s 0 halfedge, then 

O = HE. If G is opposite to F’s 1 

halfedge, then O = HE+1. If G is 

opposite to F’s 2 halfedge, then O 

= HE+2. 

• F is a sub dividable boundary face 

in odd level of subdivision. Here, 

the new three triangles are ar-

ranged differently from the regu-

lar case (figures 2c and 2d), this 
affects the way we count. Here, 

if G is opposite to F’s 0 halfedge, 

then O = HE. If G is opposite to 

F’s 1 halfedge, then O = HE+6. 

If G is opposite to F’s 2 halfedge, 

then O = HE+2. 

On the other hand, calculating the 

new interior opposite halfedges (1, 5, 

4, 8, 7, 2 in Figure 2c and 1, 5, 4, 8 in 

Figure 2d) is straightforward. Here, 

halfedge 1 of one new face is next to 

halfedge 2 of the other one (11). Op-

posite halfedges to the 0 halfedge of 

new boundary faces are assigned -1 

(non existent). 

OppositeOf (3F+1) = (3(F+1))+2, with 

F = face number  (11)

5.2.3. Splitting

A new vertex n in a regular face 

(Figure 2c) is obtained from (12). 

At boundaries (figures 2b and 2d), 
every odd subdivision level two new 

vertices are calculated in the edge of 

the boundary and the centre of the 

boundary triangle is displaced as in 

(13), (14) and (15) 

n = 1/3 (a + b + c)  (12)

d = 1/27(16a+f+10b) (13)

e =1/27(10a+f+16b) (14)

f = 1/27(4a+19f+4b) (15)

Sub triangles from [a, b, c] are built 

counter clock wise as [a, b, n], [b, c, n] 
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and [c, a, n] (Figure 2c), leaving their 

0 halfedge to coincide with an old edge 

in the subdivided face. Sub triangles 

at a boundary face in an odd level of 

subdivision are arranged from left 

to right (Figure 2d). Here [a, b, c] is 

refined with [a, n, c], [n, m, c] and [m, 
b, c]. Note that the halfedge 0 of each 

new face is made to face the border. 

5.2.4. Swapping faces

In Figure 3a, face F [a, b, c] is going 

to be swapped with face M [b, a, d]. 

Let us assume that F is a regular face. 

Swapping cannot be achieved if:

Table 4. Swapping faces F and M

F [d, c, a]  halfedges M [c, d, b] halfedges

0: F3 

1: (F3) + 1

2: (F3) +2 

Opposite: M3

Opposite: HE1

Opposite: HE3

0: M3 

1: (M3) + 1

2: (M3) +2 

Opposite: F3

Opposite: HE4

Opposite: HE2

• M has already been swapped in 

the current subdivision level. 

• M is a boundary face.

• M is a non sub dividable face. 

If swapping is possible the old op-

posite halfedge values HE1, HE2, 

HE3 and HE4 have to be stored and 

reassigned in order to keep consis-

tency and connectivity. Then, the two 

faces are swapped as shown with the 

dotted line and the new 0 halfedge is 

assigned along this line for each face 

in this new arrangement. The new 

faces are described in Table 4. 

Figure 3. a) Flipping edges. b) Neighbourhood.

HE1 HE2

HE3 HE4

M

M

F

c

a

(a)

d

b

9

8
7 6

4

3

5

c

e

b

d

a

1
2

0

10

11

F

(b)

A boundary face in an odd level is 

swapped only if the same conditions 

for regular swapping are met (except 

that M could have been swapped); 
only the leftmost and rightmost faces 

(Figure 2d) are candidates for swap-

ping, the middle face remains the 

same. Here (Figure 2b), flipping re-

quires the rearrangement of triangles 

[a, f, O
1
] and [a, d, f] to triangles [O

1
, 

d, f] and [d, O
1
, a] and triangles [f, b 

O
2
] to [e, b, f] to triangles [e, O

2
, f] and 

[O
2
, e, b] producing a boundary strip 

of five triangles.

Efficient Mesh Generation Using Subdivision Surfaces 
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5.2.5. Detecting boundaries and 

subdividable faces

A boundary face is detected by 

checking if it contains at least one -1 

valued opposite halfedge. Boundary 
vertices are detected as a last step 

in the conversion from the 3DS to 

the direct edges format. Here, a flag 
is assigned to each boundary vertex. 

In Figure 2a: 

• a is a boundary vertex if the op-

posite of halfdegde 0 or 2 is next 

to a boundary face.

• b is a boundary vertex if the op-

posite of halfdegde 0 or 1 is next 

to a boundary face.

• c is a boundary vertex if the op-

posite of halfdegde 1 or 2 is next 

to a boundary face. 

Not keeping proper track of the 

boundary vertices may produce dis-

tortion. The detection of a sub divid-

able face is yet to be implemented. 

Under certain flatness criteria (based 
on differential geometry) a face could 

be tagged as non sub dividable during 

the conversion process. 

5.2.6. Calculating a neighbour-

hood

This calculation returns the number 

of neighbours of a vertex and their 

average coordinate value. In Figure 

3b vertex c has 4 neighbours (a, b, e, 

d) and their average is obtained with 

(16). Our algorithm deals with closed 

manifolds, boundaries and distorted 

polygons. Let us assume that the first 
detected outgoing halfedge in Figure 

3b is HE 2. First, we add vertex a to 

the average and increment the neigh-

bourhood. Then, we find the opposite 
halfedge (in this case 10). If it is the 2 

halfedge of the next face we subtract 

2 in order to find the halfedge which 
points to the next vertex. If it is the 0 

or 1 halfedge of the next face we add 

1 in order to find the halfedge which 
points to the next vertex. Then, we 

add this vertex to the average and 

increment the number of neighbours. 

The algorithm continues until the 

halfedge pointing to the next vertex 

is equal to the first halfedge or until 
an edge or a distortion is detected 

(Table 2). 

Average of c-neighbours = (a + b + e 

+ d) / 4 (16)

6. RESULTS
Our direct edges implementation 

uses fewer elements. While in the 

3DS format a cube contains 26* verti-

ces, in the direct edges format it only 

contains 8. While in the 3DS format 

a spaceship contains 649* vertices, 

in the direct edges format it only 

contains 260. The number of faces 

remained the same in both cases. The 

size of one vertex, one polygon and 

one halfedge (Table 3) can be easily 

calculated as a float and an integer 
occupy 32 bits each. According to 

(7), (8) and (9) for a mesh object in 

a subdivision step the size in bytes 

would be (17). The intermediate text 

file generated in each subdivision will 
vary in size, but tests produced files 
with sizes lower than 4 kilo bytes. 

The complexity O(n) for the main 

 As generated and verified using Discreet’s 3D Studio MaxAs generated and verified using Discreet’s 3D Studio Max
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subdivision routine can be approxi-

mated as (18), because all values can 

be approximated in terms of F with 

the Euler formulas [2]. It accounts 

time for the three main procedures 

(splitting, flipping and re positioning) 
and the time to create and read from 

the intermediate file. The number of 
elements growth is shown in Figure 

4. Here, it can be seen that the num-

ber of regular faces and the number 

vertices have an exponential growth, 

while the number of boundary faces 

growth is much slower and behaves 

linearly. The number of non sub divid-

able faces remains constant. Meshes 

produced are shown in Figure 5. 

Size = (160NV + 224NF + 64NHE) / 

8 (17)

O(n)  = O (L F I) (18)

Figure 4. Element increase in √3 subdivision. 

Figure 5. a) Mesh with boundaries and 2 non sub dividable faces (7 levels). 
b) 2D mesh with boundaries (2 levels). c)  Limit and control surface of a 
cube (4 Levels). d) Spaceship (2 levels). e) Big plane (2 levels)

Level

Vertices

Faces

Boundaryfaces

Non subdividable
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Where 

L = Number of subdivision levels

F = Number of faces 

I = Neighbourhood size (insignificant 
in big meshes)

7. DISCUSSION
Parametric triangular meshes allow 

efficient validation (used for display) 
and modification (especially when 
defined with subdivision surfaces). 
We decided to use them, because due 

to their popularity, many methods 

for processing them have been de-

veloped. Coarse meshes may bring 

distorted triangles and edges (i.e. 

“nonmanifold meshes are problematic 

for most algorithms, since around 

non-manifold configurations there 

exist no well-defined local geode-

sic neighbourhood”), [2, p.19]. We 

manage them with the definition of 
proper stop conditions. Our algorithm 

can be applied to an arbitrary mesh 

(Figure 5). The understanding of the 

direct edges data structure allowed 

efficient implementation and reduced 
the number of elements used in the 

original 3DS format. Counting was 

essential in memory allocation and 

in keeping track of the halfedges for 

each new face. It allowed the effec-

tive implementation of the basic op-

erations required by the subdivision 

algorithm.

Subdivision surfaces have a major 

advantage, which is providing a 

control mesh (which will facilitate 

deformation) and a refined triangular 
mesh (which will ease display). Their 

use will bring C2 continuity to most 

regions of the mesh, producing a more 

natural look [2]. The benefits of the √3 
subdivision brought to our attention a 

better and newer subdivision scheme 

which is supported by less complex 

stencils and has a simpler way to 

deal with sharp features, boundaries 

and with adaptive refinement. In √3 
subdivision growth is slower than in 

other subdivision techniques. The 

inclusion of non sub dividable faces 

lowers the number of new generated 

faces. Apart from boundary faces, the 

growth is still exponential (Figure 3). 

However, the √3 subdivision produces 
fewer triangles than other methods 

providing similar quality and the 

mesh produced is visually appealing 

with a few levels of subdivision. 

One simple way to define edges or 
sharp features is to pre assign -1 

valued opposite halfedges to the re-

gion of interest. We want to propose 

preserving flat regions with smaller 
number of triangles. For instance, dif-

ferently from the original algorithm 

we want to avoid subdividing well 

defined flat regions during adap-

tive refinement. To achieve this, our 
algorithm still requires a flatness 
function able to predetermine what 

faces are non sub dividable. 

Londra [1] will be a virtual dog 

capable of displaying facial expres-

sions. She will use a skull model 

implemented with a polygonal mesh 

generation / representation technique 

suitable for deformation, parameter-

ization and animation, because the 

skull shape will change according to 

conformational anatomical param-

eters. From our implementation and 

the tests made, we have found that √3 
subdivision surfaces are an appropri-

ate modelling technique for the skull. 

Additionally, our skull will include 

non penetration features, requiring 

the use of an alternate implicit model 
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(implicit models are better for query 

operations). Here, the idea will be to 

create new dog breed heads from new 

skull shapes obtained altering the 

model through its control mesh that 

will produce the new refined meshes. 
To account for head type transitions, 

Londra will not require topological 

changes, only geometric ones. In con-

sequence, the complexities involved 

in the former will be avoided.
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