
Error localization as a mixed integer problem with

the editrules package

package version 2.2.0

Edwin de Jonge and Mark van der Loo

February 22, 2012

Abstract

This vignette is far from finished. Version 2.0 of the package will
have the full vignette. At the moment, functionality for solving error
localization problems with lp solvers is experimental.

1

Contents

1 Introduction 3

2 Numerical data errors 4
2.1 Boundaries . 5
2.2 Implementation in editrules 6

3 Categorical data errors 7
3.1 The cateditmatrix object . 9

4 Discussion 9
4.1 Comparison to backtracker 10

2

1 Introduction

Analyses of real data are often hindered by occurrences of incomplete or
inconsistent raw data records. The process of locating and correcting such
errors is referred to as data editing, and it has been estimated that National
Statistics Institutes spend up to 40% of their resources on this process (De
Waal et al., 2011). For this reason, considerable attention is paid to the
development of data editing methods that can be automated. Since data
are often required to obey many interrelated consistency rules, data editing
can be too complex to perform manually. Winkler (1999) mentions practical
cases where records have to obey 250, 300 or even 750 internal consistency
rules. Although the R statistical environment has numerous facilities for
analyzing categorical data [See e.g. Husson et al. (2010)], the options for
error localization and record correction are currently limited.

The R package editrules was developed to help closing the gap between
raw data retrieval and data analysis with R. The main purpose of the ed-
itrules package is to provide a user-friendly environment for handling data
restriction rules, to apply those rules to data, and to localize erroneous fields
in data based on the generalized principle of Fellegi and Holt (1976). The
package does not offer functionality for data correction. However, it does
facilitate the identification of the set of solutions for an error correction
problem. For a detailed description we refer to De Jonge and Van der Loo
(2011) and Van der Loo and De Jonge (2011).

editrules offers a fairly complete toolbox to work with numerical and
categorical edits. It contains a flexible object for localizing errors, which can
be adapted by the user of editrules based on a branch and bound algorithm
(De Waal et al., 2011). However, for the time to solve the error localization
problem with a branch and bound algorithm grows exponentially with the
number of (incorrect) variables. Many surveys have hundreds of variables,
which results in (very) long processing times for records with many errors.

This paper describes the error localization problem for numerical and
categorical edits as a mixed integer problem and its implementation in ed-
itrules. A brief description can be found in (De Waal et al., 2011) p. 75.
Mixed integer programming is a special case of linear programming. Lin-
ear programming maximizes a linear objective function, which is subject to
linear equality and linear inequality constraints. More formally:

Maximize cTx (1)

Ax ≤ b (2)

with x ≥ 0 (3)

where x is the vector of (numerical) variables to be optimized, c is a vector
of weights, b is a vector of upper bounds and A is a coefficient matrix for
the constraints. In mixed integer programming (mip) x is a mixture of
continious and integer variables.

3

Error localization implemented as a mixed integer programming results
in a fast procedure, which is typically much faster than the branch and
bound method also available in editrules.

In section 2 we describe a mip formulation for numerical records. Section
ref describes the mip formulation for categorical records. We end with a
discussion on the implementation in editrules.

2 Numerical data errors

A numerical record x with reported values (x01, . . . , x
0
m) has the following

linear constraints:

Ax� b with � ∈ {<,≤,=}n, (4)

It can easily be checked with editrules if x violates any of these con-
straints. If this is the case, the task is to find the minimal (weighted) num-
ber of adjustments to the reported values such that it complies to the edits.
These edits are (usually) valid for all records of a data set. For each reported
record we define a seperate mip, which contains the set of edits extended
with edits that depend on the reported values.

In practice reported values are always bounded: No person is older than
200 years old or taller than 30 feet. So each for each variable xi we assume
a lower boundary li and an upper boundary ui

1.

li ≤ xi ≤ ui (5)

For each xi we introduce a binary variable ∆i ∈ {0, 1}:

∆i =

{
0 ifxi = x0i
1 ifxi 6= x0i .

(6)

where x0i is the reported value for xi. We now add the following edits to the
edit set:

(li − x0i)∆i + x0i ≤ xi ≤ x0i + (ui − x0i)∆i (7)

It can easily be checked that if ∆i = 0 these edits reduce to xi = x0i ,
meaning that the reported x0i is assumed correct. If ∆i = 1 the edits reduce
to equation 5, meaning that the value of xi can take any feasible value within
its boundaries li and ui.

Using principle of Felligi Holt (Fellegi and Holt, 1976) which minimizes
the weigthed sum of adaptations, the error localization problem can be writ-
ten as:

1Note that equation 5 can also be written in the form of 4. We will use univariate or
boundary constraints explicitly and exclude them from 4.

4

Minimize
∑m

j=1 wj∆j , with:∑m
j=1 a1jxj �1 b1

.∑m
j=1 anjxj �n bn

x1 − (u1 − x0
1)∆1 ≤ x01

−x1 + (l1 − x01)∆1 ≤ −x01
.
xm − (um − x0m)∆m ≤ x0m
−xm + (lm − x0m)∆m ≤ −x0m

(8)

with wj a weight for variable xj . This problem is equal to the following
mixed integer problem:

Maximize cT x̂

Âx̂ ≤ b̂
with x̂ ≥ 0

x̂ = (x1 − l1, . . . , xm − lm,∆1, . . . ,∆m)
c = (0, . . . , 0,−w1, . . . ,−wm)

b̂ = (b1, . . . , bm, x01,−x01, . . . , x0m,−x0m)

2.1 Boundaries

The extended edit set derived in (8) depends on the boundaries li and ui.
Mathematically the size of these coefficients does not matter. Computation-
ally however their size is important. If any |ui − ci| � |aj | or |li − ci| � |aj |
the resulting mixed integer program may become numerical unstable. From
the lpsolve manual (lps, 2012):

The chance for numerical instability and rounding errors is con-
siderably larger when the input data contains both large and
small numbers. So to improve stability, one must try to work
with numbers that are somewhat in the same range. Ideally in
the neighbourhood of 1.

You should realize, that you the user are probably in a better
position to scale the problem than any computer algorithm.

For the error localization problem this means that the upper and lower
boundaries of variables xi shouldn’t be too large. A reasonable approach is
to take the minimum and maximum values for all variables in a dataset and
multiply them with a factor f (e.g. 1000).

5

> E <- editmatrix(c(

+ "x + y == z",

+ "x > 0",

+ "y > 0",

+ "z > 0"))

> dat <- data.frame(

+ x = c(1,-1,1),

+ y = c(-1,1,1),

+ z = c(2,0,2))

> # localize all errors in the data using mip

> localizeErrors(E,dat, method="mip")

Object of class 'errorLocation' generated at Wed Feb 22 09:48:16 2012

call : localizeErrors(E, dat, method = "mip")

method : mip

slots: $adapt $status $call $method $user $timestamp

Values to adapt:

adapt

record x y z

1 FALSE TRUE FALSE

2 TRUE FALSE TRUE

3 FALSE FALSE FALSE

Status:

weight degeneracy user system elapsed maxDurationExceeded

1 1 NA 0.004 0 0.004 FALSE

2 2 NA 0.004 0 0.003 FALSE

3 0 NA 0.000 0 0.002 FALSE

Figure 1: Localizing errors in a data.frame using method="mip"

2.2 Implementation in editrules

editrules contains the function localizeErrors which can be used to localize
errors in a data.frame. It default implemention using a branch and bound
algorithm is described in detail in (De Jonge and Van der Loo, 2011). It
accepts an editmatrix and a data.frame, and returns an object of class error-
Location. An errorLocation object contains the locations of errors for each
record in the data.frame as well as logging information, solution weights and
degeneracy.

We extended this function with a parameter method, that can be used to
select the localizer or mip method. If the method ”mip” is given, editrules
internally creates for each record an extended editmatrix E that contains the
conditional boundary conditions as defined in (8). Internally the package
lpsolve and Konis (2011) is used to solve the resulting mixed integer program.

Figure 1 shows an example of localizing errors using mip.

6

The default boundary conditions used in localizeErrors use ui = 1000·
x0i and li = −1000 · x0i .

3 Categorical data errors

A categorical record v with reported values (v01, . . . , v
0
m) has the following n

constraints:

ei =
if vj ∈ F i

j for j = 1, . . . ,m

then FALSE
(9)

with F i
j ⊆ Dj where Dj is the possible set of categories {1, . . . , k} for each

vj and i = 1 . . . n the number of edits.
It can easily be checked with editrules if v violates any of these con-

straints. If this is the case, the task is to find the minimal (weighted) num-
ber of adjustments to the reported values such that it complies to the edits.
Internally editrules uses an editarray object which is described in detail in
Van der Loo and De Jonge (2011). In this paper we use a different, but
equivalent, representation to allow for an easy conversion to a mixed integer
program: cateditmatrix.

A record of m categorical variables can be written as an element of the
cartesian product space D:

D = D1 ×D2 × · · · ×Dm, (10)

where each Dj is the set of possible categories for variable j.
The number of categories for variable j is labeled dj while the total

number of categories is labeled d, given by

d =
n∑

j=1

dj (11)

Categorical record v can be written as in this space as

v̌ = ⊕m
j=1(v̌j1, . . . , v̌jdj)

= (v̌11, · · · , v̌1d1 , · · · , v̌m1, · · · , v̌mdm)
(12)

with v̌jk =

{
0 if vj 6= k
1 if vj = k

(13)

Equation (9) can be written in the following form:

ei = ¬
m∧
j=1

vj ∈ F i
j =

m∨
j=1

¬(vj ∈ F i
j) (14)

=
m∨
j=1

vj 6∈ F i
j =

m∨
j=1

vj ∈ T i
j (15)

7

with T i
j = Dj \F i

j . This means that edit ei is satisfied if at least one vj ∈ T i
j .

ei can therefore be written as:

m∑
j=1

 dj∑
k=1

tijk · v̌jk

 ≥ 1 (16)

with tijk =

{
0 if k 6∈ T i

j

1 if k ∈ T i
j

(17)

These edits are (usually) valid for all records of a data set. Note that equa-
tion (21) is in a form to be used in a mixed integer program where v̌jk are
integer variables.

For each vj its categories should exclude each other, so the following
constraint must hold: dj∑

k=1

v̌jk

 ≤ 1 (18)

We introduce for each vj a binary variable ∆j ∈ 0, 1:

∆j =

{
0 if vj = v0j
1 if vj 6= v0j .

(19)

where v0j is the reported value for vi. We now add the following edit to
the edit set:

v̌jk0j
= 1−∆j with k0j = v0j (20)

It can be easily checked that if ∆j = 0 v̌jk0j
= 1, meaning that the reported

value v0j is assumed correct. If ∆j = 1, v̌jk0j
= 0, meaning that vj should

have a different value.
The categorical error localization problem now can be written as:
Minimize

∑m
j=1 wj∆j , with:∑m

j=1

(∑dj
k=1 t

1
jk · v̌jk

)
≥ 1

.∑m
j=1

(∑dj
k=1 t

n
jk · v̌jk

)
≥ 1∑d1

k=1 v̌1k ≤ 1
v̌1k01 + ∆1 = 1

.∑dm
k=1 v̌mk ≤ 1

v̌mk0m
+ ∆m = 1

(21)

8

> E <- cateditmatrix(

+ expression(gender %in% c("male", "female")

+ , if (pregnant) gender == "female"

+)

+)

> as.data.frame(E)

name edit

1 num1 gender:female + gender:male == 1

2 num2 pregnant <= gender:female

> getAb(E)

var

rules gender:female gender:male pregnant CONSTANT

num1 1 1 0 1

num2 -1 0 1 0

Figure 2: Using the cateditmatrix object

Note that parts of equation (16) can be written in a negated form:

if T i
j 6= ∅ then

dj∑
k=1

tijk · v̌jk = 1−

 dj∑
k=1

f i
jk · v̌jk

 (22)

with f i
jk =

{
0 if k 6∈ F i

j

1 if k ∈ F i
j

(23)

3.1 The cateditmatrix object

To create a mip formulation for the categorical error localization problem,
editrules uses internally the cateditmatrix object. cateditmatrix is an editma-
trix object, which is described in De Jonge and Van der Loo (2011), but it
”remembers” that it is categorical.

Figure 2 shows an example for the use of cateditmatrix. It also shows
that categorical edits can be written in the form of a linear constraint to
be used in an mixed integer problem solver. cateditmatrix can coerce an
editarray. This method can be called explicitly by a user, but it it will be
called implicitly in localizeErrors using method="mip". An example is shown
in figure 3

4 Discussion

Is a usefull addition to editrules, finds quickly solutions to error localiza-
tion problems with hundreds to thousands of variables.

9

> dat <- data.frame(gender="male", pregnant=TRUE)

> localizeErrors(E,dat, method="mip")

Object of class 'errorLocation' generated at Wed Feb 22 09:48:16 2012

call : localizeErrors(E, dat, method = "mip")

method : mip

slots: $adapt $status $call $method $user $timestamp

Values to adapt:

adapt

record gender pregnant

1 TRUE FALSE

Status:

weight degeneracy user system elapsed maxDurationExceeded

1 1 NA 0.004 0 0.003 FALSE

Figure 3: Using localizeErrors method with categorical data

Solutions given by current lp solvers can be numerical unstable, which
may result in a false positive or a false negative solution. Luckily editrules

contains substValue and isFeasible that can be used together to check the
validity of a solution. Furthermore several heuristics can be used to increase
the numerical stability by using smaller boundaries for the variables.

4.1 Comparison to backtracker

errorLocalizer is more complete, offers a more complete tool box for finding
an optimal solution. It can also find more equivalent solutions, which is not
possible or difficult with MIP solvers.

References

(2012). lpsolve reference guide. lpsolve version 5.5.2.

De Jonge, E. and M. Van der Loo (2011). Manipulation of linear edits and
error localization with the editrules package. Technical Report 201120,
Statistics Netherlands, The Hague.

De Waal, T., J. Pannekoek, and S. Scholtus (2011). Handbook of statistical
data editing and imputation. Wiley handbooks in survey methodology.
John Wiley & Sons.

Fellegi, I. P. and D. Holt (1976). A systematic approach to automatic edit
and imputation. Journal of the Americal Statistical Association 71, 17–35.

10

Husson, F., S. Lê, and J. Pagès (2010). Exploratory Multivariate Analysis
by Example Using R. Computer Sciences and Data Analysis. Chapman &
Hall/CRC.

lpsolve and K. Konis (2011). lpSolveAPI: R Interface for lpsolve version
5.5.2.0. R package version 5.5.2.0-5.

Van der Loo, M. and E. De Jonge (2011). Manipulation of categorical data
edits and error localization with the editrules package. Technical Report
201129, Statistics Netherlands.

Winkler, W. E. (1999). State of statistical data editing and current research
problems. In Working paper no. 29. UN/ECE Work Session on Statistical
Data editing, Rome.

11

