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ABSTRACT
A hydrologic estimation model based 

on the utilisation of radial basis func-

tion neural networks is presented, in 

which the aim is to forecast stream 

flows in an automated fashion. The 

problem of river flow forecasting is a 

non-trivial task because (i) the vari-

ous physical mechanisms governing 

the river flow dynamics act on a wide 

range of temporal and spatial scales 

and (ii) almost all mechanisms in-

volved in the river flow process pres-

ent some degree of nonlinearity. The 

proposed neural network was used 

to forecast daily river discharges in 

a river basin providing satisfactory 

results and outperforming previous 

successful techniques. The proposed 

model has been recently used to make 

hydrologic estimations in the Ulloa 

river, a river basin located in the 

north west of the Iberian Peninsula. 

The results obtained from the experi-

ments are presented and discussed.
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RESUMEN
Aquí se presenta un modelo hidrológi-

co de estimación basado en el uso de 

una red neuronal de base radial, con 
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el cual se busca desarrollar sistema 

automática de estimación de flujos 

de caudal. El problema de la esti-

mación de caudales no es una tarea 

trivial debido a (i) que los diversos 

mecanismos que rigen el sistema que 

determina el flujo de caudales actúan 

dentro de un rango muy amplio de 

escalas espacio – temporales y (ii) casi 

todos los elementos que intervienen y 

afectan el flujo de caudales presentan 

cierto grado de no linealidad. La red 

neuronal propuesta ha sido utilizada 

para estimar el pronóstico diario de 

caudal de una cuenca, obteniéndose 

resultados satisfactorios frente a 

otras técnicas. El modelo propuesto 

ha sido utilizado para realizar esti-

maciones en el río Ulloa, una cuenca 

ubicada al noroeste de la Península 

Ibérica. Aquí se presentan y discuten 

los resultados obtenidos con los expe-

rimentos realizados.

PALABRAS CLAVE
Red Neuronal de base Radial (RBF), 

Pronóstico de caudal, modelos hi-

drológicos, modelos de caja negra, 

modelos autorregresivos.
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1. INTRODUCTION AND 
MOTIVATION
Forecasting the behavior of a dynamic 

system is, in general, a difficult task. 

In situations in which the rules that 

determine a system are unknown, the 

prediction of the parameter values 

that determine the characteristic 

behavior of the system can be a 

problematic task. In this context, 

one of the most complex processes 

we have to face is the decision-mak-

ing process. The complexity is due 

to the uncertainty associated to the 

occurrence probability of the events 

belonging to the variable, which af-

fects the decision-making process. 

In order to reduce this uncertainty, 

people usually resort to tools that 

allow predicting or forecasting the 

value or behavior that are going to 

have the variable. In this sense, the 

ability to make an accurate prediction 

of these events or factors prior to take 

a decision should permit to reduce the 

risk and choose the better choice.

Accurate forecasting of river flow is 

needed due to the importance of sev-

eral tasks: (i) optimal design of water 

storage and drainage networks, (ii) 

management of extreme events, such 

as floods and droughts, (iii) to plan 

to future expansion or reduction (iv) 

bringing benefits for efficiency at 

power generation and (v) the preven-

tion and comprehension of hydrologic 

hazards like the change of hydro cli-

matic regime, erosion and sediment 

movement, mud flows or Environ-

mental pollutants.[1, 2] Forecasting of 

daily discharges has been one of the 

important problems for hydrologist, 

reservoir operators and flood protec-

tion engineers mainly because of the 

inherently non-linear relationships 

between input and output variables 

that complicate attempts to forecast 

stream flow events.

The temporal and spatial vari-

ability that characterizes a river 

system makes flow forecasting a 

very demanding task. During the 

past decades, the most widely used 

stochastic models for river flow 

forecasting belong to the class of 

ARIMA models.[3, 4, 5, 6, 7] These set of 

models as well as other time series 

approaches[8] and multiple regression 

techniques have directed river flow 

forecasting studies. However, arti-

ficial neural networks (ANNs) have 

recently come turning one from the 

tools intensively used in time series 

analysis and therefore also in hydro-

logic estimations. ANNs are probably 

the most successful machine learning 

technique with flexible mathemati-

cal structure, which is capable of 

identifying complex non-linear rela-

tionships between input and output 

data, without attempting to reach 

understanding as to the nature of the 

phenomena.[9]

An important aim in the current work 

is to develop a forecasting mechanism 

able to deal with little river flow, 

where a good forecasting system 

enables an accurate estimation of 

available water to cultivate or drain-

age estimation. For this purpose, 

we study the daily mean flow data 

belonging to the experimental Ulloa 

river basin ‘O Abelar’. The river basin 

is located in Abegondo (A Coruña, 

Spain) at 8º 21’ 15”N, 43º 9’ 10”W. The 

experimental river basin has an area 

of 10.7 ha. and it is situated between 

400 and 430 meters’ height. The raw 

data, which is received and processed 

daily, has a length of 8 years covering 

Water flows modelling and forecasting using a RBF neural network
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a time between the year 1997 up to 

including the year 2005.

In this study, radial basis function 

(RBF) neural networks were used to 

calculate the forecast of the daily wa-

ter volume. The study is based on the 

successful results obtained with the 

hybrid case-based reasoning system 

reported[10] and used to predict the 

evolution of the temperature of the 

water ahead of an ongoing vessel, in 

real time. RBF networks have dem-

onstrated their utility as universal 

approximators for closely modelling 

this continuous process. The ap-

proach, which is discussed, is capable 

of producing satisfactory results in 

situations in which statistical models 

have been sufficiently successful.

The structure of the paper is as fol-

lows: section 2 summarizes previous 

effort in flow river forecasting; section 

3 explains in detail the architecture of 

the proposed forecasting RBF neural 

network; section 4 presents and ana-

lyzes the results obtained with sev-

eral techniques; and finally, section 5 

concludes the study and establishes 

future research lines.

2. RIVER FLOW FORECAST
River flow forecasting is one of the 

earliest forecasting problems that 

have attracted the interest of scien-

tists. The importance of estimating 

river flows to the livelihoods of the 

inhabitants around rivers, make 

necessary the study and record of the 

levels since earliest history. In fact, 

the ancient Egyptians established 

mechanisms to make measurements 

that can in a future help to estimate 

the floods, that as it is known, they 

were very important for their sur-

vival.[11]

Estimating the flows of rivers can 

have a significant economic impact. 

Actually, the forecasting of river flows 

is important for aspects like floods, 

control of dams and water supply 

since they are aspects that normally 

have great effects in the economy and 

life of the different societies.

2.1 Classical Forecasting  

Methods

During the past few decades, a great 

deal of research has been devoted to 

the modeling and forecasting of river 

flow dynamics. This fact is explained 

because, before the development and 

application of AI tools in this field, 

the hydrologist and researchers have 

to recur to some forecast methods or 

to develop new ones according to the 

characteristics of the problem. Many 

of the techniques currently used in 

modeling hydrological time series 

and generating synthetic stream 

flows assume linear relationships 

amongst the variables. The two 

main groups of techniques include (i) 

hydrologic models and (ii) black-box 

models.[1]

Actually exist many ways to define 

the hydrological models, but essen-

tially can be classifying from three 

points of view: (i) spatial representa-

tion based, (ii) based on the hydro-

logical processes representation (iii) 

based on the temporal extension in 

which can be applied the model.[1, 26, 

27, 28, 29, 30, 31]

The classification spatial repre-

sentation based have three kind of 

models: (i) aggregated models (ii) 

semi-distributed models and (iii) 

distributed models. In the first case, 

the aggregated models, they assume 

an uniform spatial rain distribution 
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as well as for all the parameters of 

hydrological variables are consid-

ered global for the whole basin and 

constant all the time. On the other 

hand are the semi-distributed mod-

els, which allow some variability of 

the rain spatial distribution as well 

as to the hydrological variables pa-

rameters. The third kind of models, 

the distributed models, permits a 

variability of the parameters and of 

the rain spatial distribution, divid-

ing the basin in cells and simulating 

hydrological processes in each one.

In case of classification based on the 

hydrological processes representa-

tion, there is three main categories: 

(i) physically based models, (ii) con-

ceptual models and (iii) metric mod-

els. On one hand, physically based 

models are specifically designed 

to mathematically simulate or ap-

proximate the general internal sub-

processes and physical mechanisms 

that govern the river flow process. 

The input is the precipitation values 

and is partitioned into components 

that are routed through the sub-pro-

cesses either to the watershed outlet 

as stream flow or to the surface and 
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Figure 1.  Simplified hydro climate model (physically based model)

deep storages or to the atmosphere 

as evaporation.[1] Figure 1 presents 

a simplified hydrological model that 

shows five physical variables and 

their interactions. 

On the other hand (conceptual mod-

els), the parameters need to be esti-

mated from model fitting to historical 

rainfall-runoff data. Figure 2 shows a 

typical structure of a conceptual wa-

tershed hydrology model. Therefore, 

it is not possible to use a conceptual 

model in engaged watersheds where 

there are no historical rainfall-runoff 

data.

The metric models are those that 

depend on observed data, doing a 

search on the data to characterize the 

system response. That characteriza-

tion is done through an information 

extraction method from the existing 

data. These models are built with a 

minimum or null consideration of 

the physical processes that occurs 

on the hydrological system, and use 

the most simple watershed repre-

sentation. The principal advantage 

of these models is that they required 

a minimum data amount but have a 

Water flows modelling and forecasting using a RBF neural network
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limited application because the vari-

ability of observed data and they are 

not capable of considering watershed 

changes.

The classification based on the tem-

poral extension in which can be ap-

plied the model have to categories: 

(i) event-driven model, developed for 

short time simulations, normally a 

unique rain episode. The model fo-

cuses on the simulation of infiltration 

processes and surface runoff, because 

their basic target is the direct runoff. 

(ii) Continuous model, which allows 

Figure 2.  Typical structure of a conceptual watershed hydrology model
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the daily, monthly and seasonal run-

off simulation, in other words, allows 

In other words, allows simulations 

for periods more extended than a 

rain episode. 

The black-box approaches are de-

signed to identify the connection 

between the inputs and the outputs 

without going into the analysis of 

the internal structure of the physical 

process. In this approach, stochastic 

models (time series models, Marcov 

models, random walk models, etc.) 

are fitted to historical records in 
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order to forecast the near term and 

long term behavior of the hydrologic 

variables that represents the states 

of the hydrologic phenomena on spe-

cific study. 

While physically based models are 

very useful to our understanding of 

the physical mechanisms involved in 

the river flow or any other hydrological 

process, unfortunately, they also pos-

sess great application difficulties.[1,12] 

The main drawbacks are motivated 

by the fact that they (i) require a large 

number of parameters for modeling the 

complexity of river flow dynamics and 

(ii) the extension of a particular model 

to even slightly different situations is 

very difficult. [1] Instead of this, black-

box models may not necessarily 

lead to a better understanding of 

the river flow process, but have an 

advantage in that they are easier to 

apply for even different conditions 

since the modelling and forecast-

ing procedure is usually analogous. 

Furthermore, the analysis of the 

characteristic parameters of black-

box models can furnish useful in-

formation on the dynamics of the 

phenomenon.

At the black-box approach, the AR 

models are those of more extended 

use, especially the ARMA and ARIMA 

models. Some other simple methods 

could be use like moving average, 

exponential smoothing or regres-

sion models (simple and multiple) 

depending on the number of avail-

able variables and their correlation. 

Moreover, some hydrological research 

work suggests the utilization of some 

techniques according to the charac-

teristics of the series. For stationary 

single and multiple series, it is sug-

gested to use AR, ARMA and ARIMA 

models as well as the GAR (Gamma 

autoregressive) model.[13] In the case 

of single and multiple periodic time 

series, it is appropriate the utilization 

of PAR, PARMA and periodic GAR 

models.[13] However, such models do 

not attempt to correctly represent 

the nonlinear characteristics in the 

hydrologic process, specially because 

the time series analysis depends on 

the what occurs on the past, sup-

posing  ‘no change causes’, which 

is something that does not happen 

within the hydrological domain.

2.2 Recent Trends

Over the past 15 years there has 

been an increasing interest in the 

application of ANNs to the hydro-

logical domain, mainly for simulat-

ing, forecasting and predicting the 

possible behavior that can take the 

different hydrological variables.[9] 

As aforementioned, almost all the 

hydrological variables and processes 

exhibit high non-linearity and, in 

many cases, they represent those 

variables and processes with the con-

ventional physically based. The use 

of conventional or statistical models 

is not appropriate because of the poor 

understanding about the relations 

and interactions at the processes. 

There is thus a need for improve-

ment in forecasting techniques. In 

this sense, artificial neural networks 

are flexible structures capable of 

identifying the complex non-linear 

relationships between input and 

output data sets.

Although a variety of neural network 

architectures and neuro-fuzzy models 

are available from river flow studies, 

only some techniques have suffi-

ciently demonstrated their accuracy. 

Water flows modelling and forecasting using a RBF neural network
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These models include multi-layer 

perceptrons (MLP), RBF neural net-

works, Modular Networks, Recurrent 

Neural Networks and Phase-Space 

reconstruction techniques as well 

as the hybrid neural networks.  The 

existent literature always compares 

their results with the black-box, 

conceptual or physically based ap-

proaches and ARIMA model[1, 9, 2, 14, 15, 

16, 17, 21, 22, 23, 24, 25].

In general, can be affirmed that the 

frequent use of neural networks in 

hydrology is because of the advan-

tage they have over other techniques 

to identify non-linear features.  As 

above mentioned, the neural net-

works are capable to distinguish the 

relevant features to those who are 

not, furthermore are non-paramet-

ric techniques, which implies is not 

necessary to define restrictions or to 

have previous solutions.[26]

3. RBF ANN FORECASTING 
MODEL
Radial basis function networks have 

been employed in many different 

problems. In the literature, the num-

ber of applications covered by type 

of neural network is quite high and 

can be seen that pattern recognition 

and time-series analysis are the main 

fields of interest [18, 19, 20]. The main 

advantages of this type of networks 

can be summarized as follows:

• The RBF network is capable of ap-

proximating nonlinear mappings 

effectively.

• The training time of the RBF 

network is quite low compared 

to that of other neural network 

approaches such as the MLP, 

because training of the two layers 

of the network is decoupled.

• The RBF networks are successful 

for identifying regions of sample 

data not in any known class, 

because it uses a non-monotonic 

transfer function based on the 

Gaussian density function.

• RBF network is less sensitive to 

the order in which data is pre-

sented to them, because one basis 

function takes responsibility for 

one part of the input space.

The above characteristics together 

with their good capability of gener-

alization, fast convergence, smaller 

extrapolation errors and higher 

reliability over difficult data, make 

this type of neural networks a good 

choice that fulfils the necessities of 

dealing with similar problems to the 

exposed one.

3.1 RBF Topology

For our forecasting purposes, a typi-

cal RBF model consists of an input 

layer, one or two hidden layers and an 

output layer that has only one node. 

Shown in Figure 3 is a typical simple 

structure, which is most commonly 

used in forecasting. In this case, the 

input layer has several nodes, each 

representing an input variable. The 

hidden layer also has several nodes 

and represents the non-linearity of 

the network system. The output layer 

has only one node, which represents 

the forecast value corresponding to 

each set of input values.

The topology of the RBF network 

depicted in Figure 1 is characterized 

by the following aspects: (i) the input 

layer of the RBF is a receptor for 

the input data, (ii) the hidden layer 

performs a non-linear transformation 

of the input space to the space of the 
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Figure 3.   RBF model architecture

intermediate level. The intermediate 

level neurons are the function base 

for input vectors and (iii) the output 

layer estimates the linear combina-

tion of the neurons belonging to the 

intermediate level. 

In the hidden layer, the basis is nor-

mally functions whose means and 

standard deviations could be calcu-

late considering the vectors of the in-

put space. Therefore, if X is the input 

vector, and L stands for the number 

of neurons in the hidden layer, then 

h(x)=(h
1
(x),…,h

i
(x),..,h

L
(x))T define 

the output vector of the nodes belong-

ing to the hidden layer, where,

hi(x) e- i  x-gi  
2

where g
i
 represents each Gaussian 

function center defined by the input 

space vectors, and ||x-g
i
||, the Eu-

clidean distance between an input 

vector x and the i-esim g
i
 center. 

The activation state of the k-esim 

neuron of the output layer, y
k
, has to 

be calculated whit Equation (2).

where w
ik
 (i=1, 2, ..., L) represents the 

weights of the connections between 

(1)

(2)yk wikhi(x)+bk,    k=1,2,.....,M
L

i=1

the hidden layer and the k-esim neu-

ron of the output layer and b
k
 stand 

for the output bias.

3.2 RBF Learning Process

The mapping function of a RBF neu-

ral network, as depicted in Figure 1, 

is mostly built up of Gaussians rather 

than sigmoids as in MLP networks. 

Learning in RBF network is carried 

out in two phases: fist for the hid-

den layer and then form the output 

layer. The parameters that define 

this approximation process are (i) the 

weights between centers and output 

layers neurons (ii) the centers posi-

tion and (iii) the Gaussian functions 

of the centers.

The hidden layer is self-organizing 

where its parameters depend on the 

distribution of the inputs, not on the 

mapping from the input to the output. 

The output layer, on the other hand, 

uses supervised learning (gradient 

descent or linear regression) to set 

its parameters.

4. FLOW RIVER FORECAST
The information used for this study 

is represented by the diary record of 

Water flows modelling and forecasting using a RBF neural network
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level precipitation of rains, the river 

flow volume, the temperature and 

the phreatic level from years 1997 

up to and including 2005 obtained at 

experimental river basin ‘O Abelar’ 

(see Figure 4 for a detailed descrip-

tion of the land). The river basin this 

located in Abegondo (Province of A 

Coruña - Spain).

4.1 Study Area and Data Set

In case of the river flow volume and 

the phreatic level, there was several 

missed raw data for small periods 

of time, caused mainly because the 

instrumental of measurement failed, 

and therefore, the first problem to 

solve was to estimate all those missed 

values. The recovering of the pre-

cipitation levels was easily estimated 

because it was possible to obtain 

information from near meteorologi-

cal stations.

Meters

Repoblación Eucaliptos

Maiz forrajero

Ripisilva

121.48

Figure 4.  River basin in Avegondo (Province 
of A Coruña – Spain)

The first step to check whether the 

lacking values belonging to every 

variable were correctly estimated, 

was to analyze their time series. For 

this goal, a visual recurrence analysis 

(VRA) of river flow volume is an ad-

equate tool to obtain reliable results 

which permit to observe the factors 

which determine the chaotic behavior 

on a time series. In VRA, a one-di-

mensional time series is expanded 

into a higher-dimensional space, in 

which the dynamic of the underlying 

generator takes place. This is done 

using a technique called ‘delayed 

coordinate embedding’, which recre-

ates a phase space portrait of the 

dynamical system under study from 

a single (scalar) time series. The basic 

idea to keep in mind when studying 

a recurrent plot (RP) is simple: if the 

underlying signal is truly random 

and has no structure, the distribution 

of colors over the RP will be uniform, 

and so there will not be any identifi-

able patterns. If, on the other hand, 

there is some determinism in the 

signal generator, it can be detected by 

some characteristic, distinct distribu-

tion of colors. For example, the length 

of diagonal line segments of the same 

color on the RP can give an idea about 

the variable predictability.

Starting from a visual analysis of the 

recurrence, the time series shows a 

certain degree of recurrence without 

presenting any chaotic alterations. A 

later statistical analysis of the river 

flow volume showed that, although 

it clearly presents a big changeabil-

ity, it demonstrates some seasonal 

behavior. The variability is due to 

the difference of levels for one year 

to another. We stated that although 

it exists great variability, the time 

series present a similar trend and 

a seasonal behavior, allowing us to 

establish the lacking dates. Hav-

ing observed the above-mentioned 

factors, we proceeded to apply the 

most guessed right model that was 
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allowing a good approach to the real 

values in these short periods of time. 

For both variables, water volume 

and phreatic level, two methods of 

approach were used: (i) the mobile 

simple average when we observe 

that the most probable behavior was 

presenting absence of tendency and 

(ii) the Holt´s model for the cases 

where the series present some trend. 

The seasonality was not considered 

because they were very short periods 

of time.

Once completed the missing values 

in the time series, we proceeded to 

apply several statistical forecasting 

techniques to model the time series 

behaviour and compare the results 

obtained with out trained RBF net-

work.

4.2 River and Stream Flow  

Forecasting

The data used for the study was 

the daily record of the mentioned 

variables and has a length of 8 

years (from November 1, 1997 until 

December 31, 2005) with 2981 re-

corded data. Based on other studies, 

which have used neural networks 

to do forecasting of river flows, we 

decided to take approximately 75% 

(2190 records) of the available data 

for training the models and 25% (791) 

remaining to realize the test.

The statistical techniques used to 

forecast stream flow values were: (i) 

simple moving average, (ii) simple 

exponential smoothing, (iii) Brown´s 

linear exponential smoothing, (iv) 

Holt´s linear exponential smoothing, 

(v) Brown´s quadratic exponential 

smoothing, (vi) Winter´s triple ex-

ponential smoothing and (vii) the 

ARIMA model. The first four models 

were used because it was stated that 

the series was presenting some trend 

and seasonal behaviour. 

In order to process the data and test 

the selected techniques, we use the 

statistical program Statgraphics 

version 4.0. The data was processed 

several times with each model un-

der different parameters in order 

to find the better configuration. For 

some models, we use the optimize 

option available in the Statgraphics 

suite. The best results were selected 

based on four efficiency indexes: 

MSE, MAE, ME and RMSE. The 

reason for which we opted for these 

indexes was because we considered 

they represent, in a better way, the 

necessary aspects to select the best 

models. In this context, MSE and 

RMSE give an important weight to 

large errors, so we can observe what 

models have a substantial variation. 

With a different point of view, MAE 

indicates the difference (in absolute 

terms) between the real value and 

the forecasted one. if MAE is high, it 

possibly indicates there are too many 

distant forecasts. Finally ME index, 

which indicates whether the model 

usually generates predictions for 

below or over the real value, can give 

us information about the accuracy of 

the models.

Table 1 shows that the most ac-

curate statistical models were the 

ARIMA model, the simple exponen-

tial smoothing and the Holt´s linear 

exponential smoothing because they 

present the best indexes. As we can 

see from Table 1, the ARIMA model 

achieves the best MAE index, fol-

lowing by the simple and the Holt´s 

exponential smoothing. Taking into 

consideration the MSE values, the 

Water flows modelling and forecasting using a RBF neural network
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best index was obtained by simple 

exponential smoothing, following by 

Holt´s and finally the ARIMA model. 

This behaviour indicates that ARIMA 

model presents a high degree of ac-

curacy for those values near the real. 

However, when the model predicts 

distant values, simple and Holt’s 

techniques achieve better results.

After we obtained the results re-

flected at Table 1, we proceeded to 

carry out several simulations with 

our RBF neural network to establish 

a predictive model and comparing the 

best results with the results obtained 

with the statistical techniques.

For the data set considered for this 

study, the input and the target vari-

ables were first normalized linearly 

in the range.[-1, 1]. To establish input 

and output layers, we defined 12 

possible cases as forecasting models. 

Each case defines the number of 

neurons that determined the input 

layer and consists of N neurons 

representing the daily river flow at 

times t, t-1,…,t-N, where N= 6, 7, 8, 

9 days, and M neurons representing 

rainfall level at time t+1 and t where 

M= 0, 1, 2. The output layer always 

represents the river flow forecast at 

MODEL MSE MAE ME RMSE

Simple moving average 3,762810 0,679756 0,002215 1,939800

Simple exponential smoothing 2,768120 0,499754 0,001634 1,663770

Brown’s linear exp. Smoothing 3,353780 0,541343 0,000986 1,831330

Holt’s linear exp. Smoothing 2,775680 0,509831 -0,02927 1,666040

Brown’s quadratic exp. smoothing 4,626800 0,622058 0,000802 2,151000

Winter’s exp. Smoothing 13,4406 1,09275 0,059589 3,666140

ARIMA 2,922110 0,477654 -0,00059 1,709420

Table 1.   Forecasting streams flow with statistical techniques.

time t+1. The possible models were 

(i) river flow defined only by the 6, 7, 

8 and 9 previous days, (ii) river flow 

defined by the records of the 6, 7, 8 

and 9 previous days plus the rainfall 

level of the target day and (iii) river 

flow defined by the records of the 6, 

7, 8 and 9 previous days plus the 

rainfall level of the target day and 

the previous one. 

For each model, we performed four 

simulations with 25, 50, 75 and 100 

centres and 500 iterations. For each 

simulation MAE index was calculated 

and the two best models were chosen. 

The results obtained showed that the 

best models were those working with 

6 and 8 days before the target day.

The following step in the experi-

mentation was to perform another 

five simulations in each case (6 and 

8 days previous). Each simulation 

worked with 75, 80, 85, 90, 95 and 

100 centres with 2000 iterations, and 

after observe the results, we easily go 

over the conclusion: the best model 

was the RBF network with 6 neurons 

in its input layer. Figure 5 shows 

the comparison between these two 

models. As is depicted in Figure 6, 

MAE index for the case of six previ-
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Figure 5.  Different configurations of the RBF network varying 
the input layer (6 and 8 neurons)

MODEL MSE MAE ME RMSE

RBF  

Neural 

Network

0,832893 0,415789 -0,092801 0,912630

MAE comparison for 6 previuos days

0,80000
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0,41621
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Figure 6.  Different configurations of the RBF network varying the number 
of centres and iterations

ous days (discontinuous line) usually 

presents a better behaviour than the 

other configuration.

The next experiment was to compare 

the best RBF network configuration 

against the results obtains with the 

classical methods. In order to do 

this, we first analyzed the behaviour 

of our network varying the number 

of centres and iterations. Figure 6 

shows all the indexes obtained at 

the simulations demonstrating that 

the best configuration corresponds to 

the simulation with 100 centres and 

500 iterations. For this configuration, 

Table 2 shows the better efficiency 

indexes for RBF neural network.

Table 2.   Forecasting streams flow with the 
RBF neural network.

Water flows modelling and forecasting using a RBF neural network
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When we compare the results showed 

in Table 2 with those obtained apply-

ing the statistical techniques, we can 

see as the neuronal network presents 

better accuracy in its forecast. Figure 

8 shows the absolute error obtained 

whit the RBF ANN, where the con-

tinuous line represents the real data 

and the bars represent the absolute 

error value.

At this point, we consider relevant to 

mention that we observed some spe-

cial characteristic in the times series. 

As we can see in Figure 7, the time 

series present high variability at the 

first 6 years and after that it shows 

stability. This stability is possibly 

explained because there was a great 

diminution of rains by a long period 

of time, the climate was very dry and 

that conditions contribute to gen-

erating some stationary data. This 

situation generates certain disadvan-

tages with the analyses and forecast 

based on RBF networks, because if 

the selected training data presents 

high variability and the selected test 

Figure 7.  Absolute error obtained with the RBF neural network

data have stationary, the statistical 

techniques can get to be better and 

therefore more accurate.

For a better and complete analysis, 

especially because the situation afore 

mentioned, we decided to apply a 

Kruskall-Wallis test to compare the 

forecast obtained with the different 

methods. As it is known, this is a non 

parametric test to determine if exist 

some statistically significant differ-

ence amongst the medians of the re-

sults obtained from experiments. The 

method tests the assumption that the 

medians of the samples are equal, 

and at the 95% confidence interval, 

we obtain a P-Value = 0,00482519. 

Since the P-value is less than 0,05, 

we can assume that there is a statis-

tically significant difference amongst 

the medians. To better confirmation, 

we apply the U Mann-Withney test to 

evaluate and establish which models 

are significantly different from the 

others and the results are show at 

Table 3.
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Table 3.   Statistical analysis of the models’ behaviour.

As depicted in Table 3, the results 

indicate that it exists a statistical 

difference between the RBF neural 

network and the others methods 

except in two cases, with the moving 

average and the simple exponential 

smoothing. This situation is possibly 

explained by the previously men-

tioned phenomenon, especially when 

these two methods are very efficient 

in stationary situations. Neverthe-

less, the accuracy of the RBF network 

is better if we compare the results of 

Tables 1 and 2.

5. CONCLUSIONS AND FUTURE 
WORK
The most important conclusion is the 

better accuracy that has RBF neural 

network to predict variable situa-

tions comparing with other existing 

forecasting methods. The neural 

*

Moving 

Average

Simple 

exp. 

Smooth.

Brown’s 

linear exp. 

smooth.

Holt’s li-

near exp. 

smooth.

Brown’s qua-

dratic exp. 

smooth.

Winter’s 

exp. 

smooth.

ARIMA

RBF 

Neural 

Network

Moving  

Average

Simple exp.  

smooth.
=

Brown’s linear  

exp. smooth.
= =

Holt’s linear exp.  

smooth.
= = =

Brown’s quadratic  

exp. smooth.
= = = =

Winter’s exp.  

smooth.
* * * * *

ARIMA = = = = = =

RBF neural  

network
= = * * * * *

network approximation is better be-

cause the ANN does not suffer from 

the dependency level that has other 

models from the historical behaviour. 

In this sense, the learning capacity 

of the RBF neural network is the 

characteristic that permits to obtain 

a more accurate result.

In this context, in which environ-

mental phenomenon’s usually pres-

ent a higher degree of variability, 

an accurate forecasting system can 

help to make good decisions in many 

aspects like (i) the estimation of the 

future behaviour of scarce resources, 

(ii) determining which are the pos-

sible causes of that behaviour, (iii) 

the development of economic plans 

according the resources that have a 

specific community or (iv) the eco-

nomic impact due to changes in the 

environment, between others. The 

Water flows modelling and forecasting using a RBF neural network
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ANN helps too much to build a good 

decision support system that helps to 

obtain and solve the problems afore 

mentioned.

Another relevant question is that if a 

neural network learns from data with 

different characteristic at the training 

and testing phases, the most possible 

situation is that the ANN lost accu-

racy especially when its results are 

compare whit other statistical models. 

That situation is very normal to occur, 

especially with small volumes of water 

as in our river basin.

A relevant aspect for us in order to 

continue our work is how the pro-

posed ANN could help in the defini-

tion of a decision support system. In 

this sense, we believe in the possibil-

ity of integrating the RBF neural net-

work with other forecasting methods 

in order to implement an ensemble 

forecasting model. The whole model 

will obtain more accurate results 

which help to make better decisions 

by means of reducing the uncertainty 

and explaining the behaviour of non-

controllable variables.

According with the situation afore-

mentioned, the main idea with the 

proposed ensemble forecasting ap-

proach is to select, for each situation, 

the best model depending on the 

behaviour of the time series. In this 

sense, there are several aspects to 

take into consideration as the utiliza-

tion of a proportional weighting vot-

ing schema or the identification of the 

best past cases to use for the forecast-

ing. Based on our previous experience 

in the development of hybrid systems, 

it could be possible to employ a CBR 

(Case-Based Reasoning) system as a 

wrapper methodology for the integra-

tion of the selected techniques.
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