Evaluating Carbon Footprint Behavior in the Agriculture and Energy Sectors: A Review

Main Article Content

Andrés López Astudillo Lina Marcela Rodríguez Claudia Marcela Lubo Fernando Arenas Beatriz Eugenia Sierra


Since the pre-industrial era, emissions of greenhouse gases have increased by about 70%, given anthropogenic activities. Thus, System Dynamics represents a fundamental tool that makes it possible to adopt a systemic-complex approach to the research process of modeling the behavior of these gases in different sectors. This paper presents a literature review about related case studies, mainly in the agriculture and energy sectors. By virtue of these models, it is feasible to identify alternative scenarios for a carbon footprint indicator in order to support strategic decision-making in secure environments at low risk, cost, and time. This review emphasizes the significance of modeling the carbon footprint behavior as a complex dynamic system mainly focused on the agriculture sector, which contributes 38.1% of greenhouse gas emissions to the atmosphere. Finally, it concludes with a future research project to deploy it in a sugarcane cropping system, one of the most important agro-industrial producers in Colombia.

Article Details

Author Biographies

Andrés López Astudillo, Universidad Icesi

Ph.D(c). Candidate to Doctor  in Strategy and Organization from Universidad de Valencia (Spain). Master in Information and Knowledge's Society from Universidad Oberta de Cataluña (Barcelona, Spain). Specialist in Marketing, Specialist in Production Management, MBA and Business Administrator from Universidad Icesi (Cali, Colombia). Director of  Specialization in Environmental Management at Universidad Icesi. His areas of professional interest include environmental management and topics related with carbon footprint, areas he has addressed from several research projects.

Lina Marcela Rodríguez, Universidad Icesi

Cum Laude Industrial Engineer from Universidad Icesi (Cali, Colombia). As part of Young Researchers initiative (Colciencias), she participates in the research group Icubo of the Universidad Icesi, in the project «Carbon Footprint Calculation of a Sugarcane Cultivation». In 2013, as a student, she was part of the research team of the project «Implementation of Value Stream Mapping in the process of product Storage and Dispatch without palletizing in candy plant Colombina», company where she developed her professional practice.

Claudia Marcela Lubo, Universidad Icesi

Industrial Engineer and Master in Industrial Engineering from Universidad Icesi (Cali, Colombia). As part of  Young Researchers Project (Colciencias) she is member of the  research group Icubo (Universidad Icesi), where she participates in the project «Carbon Footprint Calculation of a Sugarcane Cultivation».

Fernando Arenas, Universidad Icesi

Doctor (c) in Business Management and Strategy from Universidad de Valencia (Spain); Chemical Engineer and Master in Environmental Engineering from Universidad Nacional de Colombia (Bogotá). Post-graduate and pregraduate professor at Universidad Icesi (Cali, Colombia). Director or i3 research team, member of  the System Dynamics Society and the European Academy of Management, and reviewer at the European Management Journal.

Beatriz Eugenia Sierra, Universidad Icesi

Biologist from Universidad del Valle (Cali, Colombia) and Specialist in Environmental Management from Universidad Icesi  (Cali). Currently she is a professor in the areas of Design for the Environment and Degree Projects at the Department of Industrial Engineering (Universidad Icesi). She is part of the researchers team of  the «Calculation of Carbon Footprint in a Sugarcane Growing» project.


Aggarwal, P. K., Kalra, N., Chander, S., & Pathak, H. (2005). InfoCrop: a dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description. Agricultural Systems, 89(1), 1-25.

Aggarwal, P., Kalra, N., Chander, S., & Pathak, H. (2006). InfoCrop: A dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. II. Performance of the model. Agricultural Systems, 89, 46-47.

Alkafoury, A., Bady, M., Aly, M. H. F., & Negm, A. M. (2013). Emissions Modeling for Road Transportation in Urban Areas: State-of-Art Review. Proceeding of 23rd International Conference on ―Environmental Protection is a Must‖ (Vol.23).

Asocaña. (s.f.). El Sector Azucarero Colombiano en la actualidad. from http://www.asocana.org/publico/info.aspx?Cid=215

Baumert, K. A., Herzog, T., & Pershing, J. (2005). Navigating the numbers: Greenhouse gases and international climate change agreements. World Resources Institute

Brown, L., Scholefield, D., Jewkes, E., & Lockyer, D. (2003). NGAUGE: a decision support system to optimise N fertilization of UK grassland for economic and/or environmental goals. Paper presented at the 12th N Workshop, Exeter, UK.

Chi, Y., Guo, Z., Zheng, Y., & Zhang, X. (2014). Scenarios analysis of the energies’ consumption and carbon emissions in China based on a dynamic CGE Model. Sustainability, 6(2), 487-512.

Del Grosso, S. J., Ojima, D. S., Parton, W. J., Stehfest, E., Heistemann, M., DeAngelo, B., & Rose, S. (2009). Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils. Global and Planetary Change, 67(1), 44-50.

Del Grosso, S., Mosier, A., Parton, W., & Ojima, D. (2005). DAYCENT model analysis of past and contemporary soil N< sub> 2 O and net greenhouse gas flux for major crops in the USA. Soil and Tillage Research, 83(1), 9-24.

Del Prado, A., Scholefield, D., Chadwick, D., Misselbrook, T., Haygarth, P., Hopkins, A., . . . Turner, M. (2006). A modelling framework to identify new integrated dairy production systems. Grassland Science in Europe, 11, 766-768.

Denmead, O., Macdonald, B., Bryant, G., Naylor, T., Wilson, S., Griffith, D. W., . . . Moody, P. (2010). Emissions of methane and nitrous oxide from Australian sugarcane soils. Agricultural and Forest Meteorology, 150(6), 748-756.

Dyner, I., Smith, R. A., & Peña, G. E. (1995). System dynamics modelling for residential energy efficiency analysis and management. Journal of the Operational Research Society, 46(10), 1163-1173.

Feng, Y., Chen, S., & Zhang, L. (2013). System dynamics modeling for urban energy consumption and co< sub> 2 emissions: A case study of Beijing, China. Ecological Modelling, 252, 44-52.

Food, Agriculture Organization of the United Nations [FAO]. (2006). Fertilizer use by crop [FAO Fertilizer Plant Nutrition, Bulletin 17]. Rome. Italia: FAO.

Ford, A. (1983). Using simulation for policy evaluation in the electric utility industry. Simulation, 40(3), 85-92.

Giger-Reverdin, S., Morand-Fehr, P., & Tran, G. (2003). Literature survey of the influence of dietary fat composition on methane production in dairy cattle. Livestock Production Science, 82(1), 73-79.

Gitay, H., Suárez, A., Watson, R., & Dokken, T. J. [Eds.]. (2012). Cambio climático y biodiversidad. Ginebra, Suiza: Intergovernmental Panel on Climate Change.

Hediger, W. (2006). Modeling GHG emissions and carbon sequestration in Swiss agriculture: An integrated economic approach. Paper presented at the International Congress Series.

Hernández, N., Soto, F., & Caballero, A. (2009). Modelos de simulación de cultivos: Características y usos. Cultivos Tropicales, 30(1), 73-82.

Horng, J.-J., Lee, R., & Liao, K. (2004). Using STELLA system dynamicmodel to analyzegreenhouses gases/ emission from solid waste management in Taiwan (698466). Paper presented at the Symposia Papers Presented Before the Division of Environmental Chemistry American Chemical Society.

Houghton, J. T. (1997). Revised 1996 IPCC guidelines for national greenhouse gas inventories: Intergovernmental Panel on Climate Change.

IDEAM [Ed.]. (2009). Inventario nacional de gases de efecto invernadero, años 2000 y 2004. Bogotá, Colombia: IDEAM, MAVDT y PNUD.

ISEE Systems. (2006). Technical Document for the Ithink and STELLA Software.

Jones, J., Keating, B., & Porter, C. (2001). Approaches to modular model development. Agricultural Systems, 70(2), 421-443.

Joumard, R., Andre, J.-M., Rapone, M., Zallinger, M., Kljun, N., Andre, M., . . . Weilenmann, M. (2007). Emission factor modelling and database for light vehicles-Artemis deliverable 3.

Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., . . . Hochman, Z. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3), 267-288.

Keating, B., Robertson, M., Muchow, R., & Huth, N. (1999). Modelling sugarcane production systems I. Development and performance of the sugarcane module. Field Crops Research, 61(3), 253-271.

Klier, C. G., Haberbosch, S.,. Ruser, C., Stenger, R., Flessa, H., & Priesack, E. (2011). Modeling nitrous oxide emissions from potato-cropped soil. Vadose Zone Journal, 10(1), 184–194. doi: 10.2136/vzj2009.0194

Lei, X., Zhang, J., & Li, J. (2012). A system dynamics model for urban low-carbon transport and simulation in the city of Shanghai, China. AISS: Advances in Information Sciences and Service Sciences, 4(1), 239-246.

Li, H., Qiu, J., Wang, L., Tang, H., Li, C., & Van Ranst, E. (2010). Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat–maize rotation system in China. Agriculture, Ecosystems &Environment, 135(1), 24-33.

Martínez, F. L., & Londoño, J. E. (2013). El pensamiento sistémico como herramienta metodológica para la resolución de problemas. Revista Soluciones de Postgrado, 4(8), 43-65.

Matsumoto, K. (2011). Economic analysis of CO2 emission abatement applying a dynamic CGE model with endogenous technological change: Impacts of the time horizon (pp. 1454–1463). University of Shiga Prefecture.

Naill, R. F. (1992). A system dynamics model for national energy policy planning. System Dynamics Review, 8(1), 1-19.

Newell, J. P., & Vos, R. O. (2011). “Papering” over space and place: product carbon footprint modeling in the global paper industry. Annals of the Association of American Geographers, 101(4), 730-741.

Olesen, J. E., Schelde, K., Weiske, A., Weisbjerg, M. R., Asman, W. A., & Djurhuus, J. (2006). Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agriculture, Ecosystems & Environment, 112(2), 207-220.

Pannkuk, C., Stöckle, C., & Papendick, R. (1998). Validation of CropSyst for winter and spring wheat under different tillage and residue management practices in a wheat-fallow region. Agric. Syst, 57, 121-134.

Penman, J. (2000). Good practice guidance and uncertainty management in national greenhouse gas inventories. Kanawaga, Japan: Institute for Global Environmental Strategies.

Peter, S., Hartmann, M. and Hediger, W. (2006). Modeling the structural adjustment process in Swiss agriculture to estimate future greenhouse gas and nitrogen emissions and evaluate policy options.96th EAAE Seminar: Institute of Agricultural Economics.

Probert, M., Dimes, J., Keating, B., Dalal, R., & Strong, W. (1998). APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. Agricultural Systems, 56(1), 1-28.

Qudrat-Ullah, H. (2005). MDESRAP: a model for understanding the dynamics of electricity supply, resources and pollution. International Journal of Global Energy Issues, 23(1), 1-14.

Regmi, M.B. (2012). Climate Change and Transport: Assessment of Freight Modal Shift and Emissions through Dry Port Development. Saarbrücken, Alemania: Lap Lambert

Riedo, M., Grub, A., Rosset, M., & Fuhrer, J. (1998). A pasture simulation model for dry matter production, and fluxes of carbon, nitrogen, water and energy. Ecological Modelling, 105(2), 141-183.

SAC. (2012). Sector Agroindustrial Colombiano. Bogotá: PROEXPORT COLOMBIA.

Schils, R., Olesen, J. E., Del Prado, A., & Soussana, J. (2007). A review of farm level modelling approaches for mitigating greenhouse gas emissions from ruminant livestock systems. Livestock Science, 112(3), 240-251.

Senge, P. M. (1995). La quinta disciplina en la práctica: cómo construir una organización inteligente. Bogotá, Colombia: Norma.

Sterman, J. D. (2000). Business dynamics: systems thinking and modeling for a complex world (Vol. 19). Irwin/McGraw-Hill Boston.

Sterman, J. D. (2002). System Dynamics: systems thinking and modeling for a complex world. Paper presented at the Proceedings of the ESD Internal Symposium.

Stöckle, C., Higgins, S., Kemanian, A., Nelson, R., Huggins, D., Marcos, J., & Collins, H. (2012). Carbon storage and nitrous oxide emissions of cropping systems in eastern Washington: A simulation study. Journal of Soil and Water Conservation, 67(5), 365-377.

Thorburn, P. J., Biggs, J. S., Collins, K., & Probert, M. (2010). Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems. Agriculture, Ecosystems &Environment, 136(3), 343-350.

Trappey, A. J., Trappey, C. V., Hsiao, C.-T., Ou, J. J., & Chang, C.-T. (2012). System dynamics modelling of product carbon footprint life cycles for collaborative green supply chains. International Journal of Computer Integrated Manufacturing, 25(10), 934-945.

Villarreal, D. (2011). Understanding GHG emissions: Stock vs. Flows. from http://blogs.ei.columbia.edu/2011/07/18/understanding-ghg-emissions-stock-vs-flows/

Wang, Z., Zhang, B., Li, X.-Y., Song, K.-S., Liu, D.-W., & Zhang, S.-Q. (2006). Using CropSyst to simulate spring wheat growth in black soil zone of northeast China. Pedosphere, 16(3), 354-361.

Wang, H., & McGlinchy, I. (2009). Review of vehicle emission modelling and the issues for New Zealand. Paper presented at the Proceedings of the 32nd Australasian Transport Research Forum.

Wang, M., Wu, M., Huo, H., & Liu, J. (2008). Life-cycle energy use and greenhouse gas emission implications of Brazilian sugarcane ethanol simulated with the GREET model. International Sugar Journal, 110(1317).

Zhang, Z. X. (1998). Macroeconomic effects of CO< sub> 2emission limits: A computable general equilibrium analysis for China. Journal of Policy Modeling, 20(2), 213-250.