Platform for processing medical ultrasound obstetric images enabled in the cloud

Kevin Jessid Figueroa Maza, Luis Enrique Mendoza

Abstract


Fetal monitoring using noninvasive imaging has been developing over the last thirty years. These studies enable future problems to be detected and prevented. This paper presents a software that uses ultrasound imaging to detect the nuchal translucency area. This area is important for the detection of trisomy 21 or Down syndrome. For this, the software implements techniques of morphological operations and the Watershed transformation. Additionally, a web platform that allows remote access to the software was developed. Finally, the detection of the area is demonstrated using the Watershed transformation.


Keywords


Ultrasound, morphological, Watershed, nuchal translucency, trisomy.

Full Text:

PDF

References


Week Ultrasound Down Syndrome (s.f). [online]. Retrieved from http://imgarcade.com/1/18-week-ultrasound-down-syndrome/

Apache Foundation. (2015). Apache tomcat [on line]. Retrieved from http://apachefoundation.wikispaces.com/Apache+Tomcat

Bonilla, F. & Machado, L. (2010). Ultrasonidos 3D-4D en obstetricia. Madrid, España: Médica Panamericana.

Pérez, F., López, C., & Villar, R. (2013). Fundamentos físicos de los procesos biológicos. Alicante, España: Club Universitario.

De Luca, D. (2011). HTML5: Entienda el cambio, aproveche su potencial. Buenos Aires, Argentina: Users.

Deitel, P. & Deitel, H. (2012). Cómo programar en Java [9th ed.]. Ciudad de México, México: Pearson.

Down syndrome ultrasound nuchal translucency (2014). [on line]. Retrieved from http://tuningpp.com/down-syndrome-ultrasound-nuchal-translucency/

Esqueda, J. & Palafox, L. (2005). Fundamentos de procesamiento de imágenes. Baja California, México: Universidad Autónoma de Baja California.

Freivald, J. [Coord.]. (2015). EAI – Enterprise application integration [on line - Information Builders]. Retrieved from http://www.informationbuilders.com/eai-enterprise-application-integration

González, M. & Ballarin, V. (2008). Segmentación de imágenes utilizando la transformada Watershed: obtención de marcadores mediante lógica difusa. IEEE Latin America Transactions, 6(2), 223-228.

González, R. & Wood, R. (2006). Digital image processing. Upper Saddle River, NJ: Prentice Hall.

Groussard, T. (2010). Java enterprise edition: desarrollo de aplicaciones web con JEE 6. Barcelona, España: ENI.

Homebrewed (2010, Nov. 6th). Back to the fun times and good news! [online]. Retrieved from http://homebrewedbaby.com/category/before/page/66/

Kane, J. & Sternheim, M. (2007). Física. Barcelona, España: Reverté.

Kroenke, D. M. (2003). Procesamiento de bases de datos: fundamentos, diseño e implementación. Ciudad de México, México: Pearson.

Kurjak, A. & Chervenak, F. (2009). Ecografía en Obstetricia y Ginecología. Buenos Aires, Argentina: Médica Panamericana.

MathWorks. (2014). Documentation / Watershed [on line]. Retrieved from http://es.mathworks.com/help/images/ref/watershed.html?searchHighlight=w

MathWorks. (2015). Matlab compiler [on line]. Retrieved from http://es.mathworks.com/products/compiler/

McGraw-Hill Access: Emergency medicine [web site]. Retrieved from http://www.accessem.com/http://www.accessem.com/

McGraw-Hill Access: Medicine [web site]. Retrieved from http://www.accessmedicine.com/imageindex.aspx

McGraw-Hill Access: Pediatrics [web site]. Retrieved from http://www.accesspediatrics.com/

McGraw-Hill Access: Surgery [web site]. Retrieved from http://www.accesssugery.com/

Mẹ Yêu Con (2015). Mayeucon.org [portal]. Retrieved from http://meyeucon.org/

Moroder, W. (2010). File: Fetal oesophagus at 12 weeks ecografia Dr. Wolfgang Moroder.jpg [imagen - CC BY-SA 3.0]. Retrieved from http://commons.wikimedia.org/wiki/File:Fetal_oesophagus_at_12_weeks_ecografia_Dr._Wolfgang_Moroder.jpg

Navas, K & Jayadevan, R. (2014). LAB Primer through MATLAB®: Digital signal processing, digital image processing, digital signal processor and digital communication. New Delhi, India: PHI.

Oracle. (2015). Java techinfo [on line]. Retrieved from http://www.java.com/es/download/faq/techinfo.xml

Rodriguez, L.G. (2013, April 17th). Visión artificial con Matlab: detección y seguimiento de objetos [video]. [online - Math-Works]. Retrieved from: http://www.mathworks.com/videos/computer-vision-with-matlab-for-object-detection-and-tracking-82036.html

Schmidt, G. (2007). Ecografía: De la imagen al diagnóstico. Madrid, España: Médica Panamericana.

Universitats KlinikumBonn (2015). Risikokalkulation [online]. Retrieved from http://www.ukb.uni-bonn.de/42256BC8002AF3E7/vwWebPagesByID/97D4B49C2011B21DC12577F30059478B

Vera, A. & Arcila J. F (2009). Segmentación de imágenes microscópicas odontológicas mediante transformada Watershed, [ponencia en XIV Simposio de tratamiento de señales, imágenes y visión artificial, Pereira, Colombia]. Recuperado de http://gdsproc.com/congreso/vera_stsiva_2010.pdf

Wu, Q., Merchant, F., & Castleman, K. (2008). Microscope image processing. Oxford, UK: Elseiver.




DOI: http://dx.doi.org/10.18046/syt.v13i32.2014

Refbacks

  • There are currently no refbacks.

Comments on this article

View all comments