Development of a multispectral system for precision agriculture applications using embedded devices

  • Angie Katherine Torres Galindo Universidad de los Llanos, Villavicencio
  • Andrés Felipe Gómez Rivera, Universidad de los Llanos, Villavicencio
  • Andrés Fernando Jiménez López Universidad de los Llanos, Villavicencio
Keywords: Precision agriculture, Python, remote sensing, software, wireless.


This document shows advances in the development of prototypes to acquire remote sensing information in Unmanned Aerial Vehicles for applications in precision agriculture. We present the development of two prototypes consisting of multispectral cameras for the blue, green, red, and near infrared bands using Tiva® C Series LaunchPad and Raspberry Pi development boards, which presented substantial differences in processing time and images storage. In this document, we describe the design and development of a multispectral information acquisition system to analyze vegetal coverage, initially in an African oil palm plantation. This system couples with an Unmanned Aerial Vehicle, allowing latitude and longitude maneuverability. This improves the data gathering efficiency in small plots, increasing the spatial and temporal resolution from a system controlled on the ground.


Download data is not yet available.

Author Biographies

Angie Katherine Torres Galindo, Universidad de los Llanos, Villavicencio
Candidate to degree in Electronics Engineering (Universidad de los Llanos, Villavicencio-Colombia). His current research interests are applications of precision agriculture, robotics and embedded systems.
Andrés Felipe Gómez Rivera,, Universidad de los Llanos, Villavicencio

Candidate to degree in Electronics Engineering (Universidad de los Llanos, Villavicencio-Colombia). His current research interests are applications of precision agriculture, robotics and embedded systems.

Andrés Fernando Jiménez López, Universidad de los Llanos, Villavicencio

Master in Sciences–Physics (Universidad Nacional de Colombia) and Electronic Engineer (Universidad Pedagógica y Tecnológica de Colombia). Professor at the Math and Physics Department - Basic Sciences and Engineering Faculty and member of the Macrypt research group at the Universidad de los Llanos (Villavicencio, Colombia), since 2013. His current research interests include image processing, precision agriculture, physics and remote laboratories.


Abril, P., & Butcher, S. (2001). Overgrazing and soil carbon dynamics in the western Chaco of Argentina. Appl. Soil Ecology, 16, 243-249.

Hoffer, A. (1978). Biological and physical considerations in applying computer-aided analysis techniques to remote sensor data. In Remote Sensing: The Quantitative Approach (pp. 227-289). New York, NY: McGrawHill.

Hunt, E., Hively, W., Fujikawa, W., Linden, S., Daughtry, C., & McCarty, G. (2010). Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sensing, 2(1), 290-305.

Inoue, Y. (1997). Remote sensing of crop and vegetative environment. Journal of Japan Remote Sensing Society, 17(4), 57-67.

Jiménez, A. (2010). Dispersión de ondas electromagnéticas en coberturas vegetales. Ingeniería, Investigación y Desarrollo, 10(1), 33-38.

Jiménez, A., Arteaga, E., & Mesa, R. L. (2006). Sistemas de agricultura de precisión. Ingeniería, Investigación y Desarrollo, 2(1), 44-47.

Jiménez, A., Jiménez, F., & Fagua, E. (2013). Digital image processing of remote sensing products for precision agriculture. Revista Colombiana de Tecnologías de Avanzada, 1(21), 19-26.

Jiménez, A., Ravelo, D., & Gómez, J. (2010). Sistema de adquisición, almacenamiento y análisis de información fenológica para el manejo de plagas y enfermedades de un duraznero mediante tecnologías de agricultura de precisión. Tecnura, 14(27), 41-51.

Lee, W. & Searcy, S. (2000). Multispectral sensor for detecting nitrogen in corn plants. In ASAE Annual International Meeting, Midwest Express Center, Milwaukee, Wisconsin, (pp. 9-12) [ASAE No. 001010]. Washington, DC: ASAE.

Nebiker, S., Annena, A., Scherrerb, A., & Oeschc, D. (2008). A light-weight multispectral sensor for micro UAV—Opportunities for very high resolution airborne remote sensing. International Arch. Photogrammetry and Remote Sensing Spatial Information, 37, 1193-1198.

Sanabria, J. & Archila, J. (2010). Land use discrimination from multiespectral images. Revista Colombiana de Tecnologías de Avanzada, 2(16), 100-107.

Schale, H., Keller, J., & Fischer, J. (2000). Land cover texture information extraction from remote sensing image data. CO2 ASPRS Annual Conference. Bethesda, MD: ASPRS.

Srinivasan, A. (2001). Site-specific management for selected cropping systems in Asia: Progress and prospects. In Promoting Global Innovation of Agricultural Science and Technology and Sustainable Agriculture Development Session 6: Information Technology of Agriculture, Proceedings of the International Conference on Agricultural Science and Technology: Beijing, China, 2001, (pp.180-190). ICAST

Srinivasan, A. (2006). Handbook of precision agriculture: Principles and applications. Binghamton, NY: Food Products.

Turner, D., Lucieer, A., & Wallace, L. (2013). Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Transactions on Geoscience and Remote Sensing, 99, 1-8.

Uto, K., Seki, H., Saito, G., & Kosugi, Y. (2013). Characterization of rice paddies by a UAV-mounted miniature hyperspectral sensor system. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 851-860.

Zhou, G., Ambrosia, V., Gasiewski, A., & Bland, G. (2009). Foreword to the special issue on unmanned airborne vehicle (UAV) sensing systems for earth observations. IEEE Transactions in Geoscience Remote Sensing, 47(3), 687-689.
Original Research