Design and construction of a prototype of an unmanned aerial vehicle equipped with artificial vision for the search of people

Andrés Espinal Rojas, Andrés Arango Espinal, Luis Ramos, Jorge Humberto Erazo Aux


This paper describes the development and implementation of a six-pointed Unmanned Aerial Vehicle [UAV] prototype, designed for finding lost people in hard to access areas, using Arduino MultiWii platform. A platform capable of performing a stable flight to identify people through an on-board camera and an image processing algorithm was developed. Although the use of UAV represents a low cost and quick response –in terms of displacement– solution, capable to prevent or reduce the number of deaths of lost people in away places, also represents a technological challenge, since the recognition of objects from an aerial view is difficult, due to the distance of the UAV to the objective, the UAV’s position and its constant movement. The solution proposed implements an aerial device that performs the image capture, wireless transmission and image processing while it is in a controlled and stable flight.


Drone; UAV; image processing; flight control; MultiWii; facial recognition.

Full Text:



Issod, C. (2015). Getting started with hobby quadcopters and drones. Seattle, WA: Createspace.

Futaba. (2017). The Futaba 2.4GHz Story. Retrieved from:

Gil, M. (2003). Introducción rápida a Matlab y Simulink para ciencia e ingeniería. Madrid, España: Díaz de Santos.

Guerrero, R. & Coronel, F. (2013). Sistema de navegación de un cuadricóptero guiado por el movimiento de las manos para operaciones de búsqueda y rescate [tesis]. Universidad Politécnica Salesiana: Cuenca, Ecuador.

Laguna, C. (2011). Evaluación experimental de detectores de caras y características faciales [tesis]. Universidad Pública de Navarra: España.

Maduell, I. & García, E. (2010). Visión artificial. Barcelona, España: Fundación para la Universitad Oberta de Catalunya.

Morales, A. (2016). Uso de características no lineales para identificar llantos de recién nacidos con un conjunto clasificador [tesis]. Universidad de las Américas: Puebla, México.

Newcome, L. R. (2004). Unmanned aviation: A brief history of unmanned aerial vehicles. Reston, VA: American Institute of Aeronautics and Astronautics.

Taborda, D. & Velásquez, A. (2013). Sistema de adquisición de datos de una unidad de navegación inercial y ROS como herramienta de visualización. Scientia Et Technica, 18(3), 524-529. doi:10.22517/23447214.1707

Torres, A., Gómez, A., & Jimenez, A. (2015). Development of a multispectral system for precision agriculture applications using embedded devices. Sistemas & Telemática, 13(33), 27-44. doi:10.18046/syt.v13i33.2079

US Department of Defense [USDoD]. (2017). Department of Defense dictionary of military and associate terms. Washington, DC: DoD.

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on (Vol. 1). IEEE. doi:10.1109/CVPR.2001.990517



  • There are currently no refbacks.

Comments on this article

View all comments