Performance evaluation of VoIP technology in an extended service set, in concordance with IEEE 802.11g

  • Marcelo David Núñez Cuadrado Universidad de las Fuerzas Armadas - ESPE Sangolquí
  • Carlos Andres Jativa Huilcapi Universidad de las Fuerzas Armadas - ESPE Sangolquí
  • Román Alcides Lara Cueva Universidad de las Fuerzas Armadas - ESPE Sangolquí
Keywords: Alix, ESS, IEEE 802.11g, MOS, QoE, QoS, VoIP.


In this paper, we evaluate the performance in function of the metrics associated to Quality of Service [QoS] and Quality of user Experience [QoE] in an experimental way in the VoIP service for G.711 and G.729 códecs. This was performed over an extended service set based on Wi-Fi technology in concordance with IEEE 802.11g standard using embedded systems. QoS related metrics are obtained by using the intrusive traffic injection technique. In addition, we assessed the QoE using the MOSc [Mean Opinion Score conversational] analysis. The best results were obtained for G.729, reaching up to 25 simultaneous injections with optimal delay, jitter and packet loss values according to the ITU-T recommendation for VoIP. However, the G.711 codec presented a better throughput. On the other hand, QoE evaluation indicates a slight superiority of G.729 in the MOSc appreciation. Finally, we conclude that packet loss and delay are the most influential metrics in VoIP service degradation.


Download data is not yet available.

Author Biographies

Marcelo David Núñez Cuadrado, Universidad de las Fuerzas Armadas - ESPE Sangolquí

Candidate to Engineer in Electronics and Telecommunications at the Universidad de las Fuerzas Armadas - ESPE (Sangolquí, Ecuador). En 2016 he joined the Intelligent Systems research group (WICOM) as research assistant. His main areas of interest in research are wireless systems and Voice over IP (VoIP).


Carlos Andres Jativa Huilcapi, Universidad de las Fuerzas Armadas - ESPE Sangolquí

Candidate to Engineer in Electronics and Telecommunications at the Universidad de las Fuerzas Armadas - ESPE (Sangolquí, Ecuador). En 2016 he joined the Intelligent Systems research group (WICOM) as research assistant. He completed the CCNA courses and he is candidate to CISCO certification. His main areas of interests in research are wireless communications and data networks.

Román Alcides Lara Cueva, Universidad de las Fuerzas Armadas - ESPE Sangolquí

Engineer in Electronics and Telecommunications from the Escuela Nacional Politécnica (Quito-Ecuador, 2001); Master in Wireless Systems and Related Technologies from the Politecnico di Torino (Italy, 2005); Master and PhD., in Telecommunication Networks for Developing Countries from the Universidad Rey Juan Carlos (Madrid-España, 2010/2015). He joined the Department of Electrical Engineering of the Universidad de las Fuerzas Armadas - ESPE (Sangolquí, Ecuador) in 2002, where he is full professor since 2005. He has participated in more than ten research projects developed with public funds (five of them as main researcher). His main areas of research interests are: digital signal processing, smart cities, wireless systems and automatic learning theory.


Agredo, G. & Gaviria, J. (2006). Evaluación experimental de la capacidad de IEEE 802.11 b para soporte de VoIP. Sistemas & Telemática, 4(8), 125-151. Retrieved from:

Ahson, S. & Ilyas, M. (2009). VoIP Handbook: Applications, technologies, reliability, and security. Boca Ratón, FL: CRC.
Evans, A. & Britain, K. (1989). Antennas: Selection and installation. Boston, MA: Radio Shack.

Avallone, S., Guadagno, S., Emma, D., & Ventre, G. (Sept. 2004). D-ITG distributed Internet traffic generator. In: Proceedings of the First International Conference on the Quantitative Evaluation of Systems QEST 2004 (pp. 316-317). IEEE.

Cano, M.D. & Cerdan, F. (2012). Subjective QoE analysis of VoIP applications in a wireless campus environment. Telecommunication Systems, 49(1), 5-15.

Canonical Ltd. (2016). Ubuntu 15.04. Retrieved from:

Coleman, D. D., & Westcott, D. A. (2009). CWNA: Certified wireless network administrator official study guide. Sybex. Indianapolis, IN: Wiley

Dialogic Corporation. (2007). Overcoming barriers to high-quality voice over IP Deployments [white paper] Retrieved from:

Dini, P., Font-Bach, O., & Mangues-Bafalluy, J. (2008). Experimental analysis of VoIP calls quality support in IEEE 802.11 DCF. In Proceedings of the 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (pp. 443-447). IEEE.

Farproc. (2017). Wifi analyzer [Android App]. Retrieved from:

Frost & Sullivan (2017, January 3). Growth opportunities in the VoIP access and SIP trunking services market [white paper]. Retrieved from:

Geier, J. (2010). Designing and deploying 802.11n wireless networks. Indianapolis, IN: Cisco.

Hattingh, C., & Szigeti, T. (2004). End-to-end QoS network design: Quality of service in LANs. WANs and VPNs. Indianapolis, IN: Cisco

IBM Knowledge Center. (2011). SPSS data collection 6.0.1: Call duration. Retrieved from:

ITU-T Rec. G.114: One-way transmission time. (2003). Geneva, Switzerland: ITU.

ITU-T Rec. P.800: Methods for subjective determination of transmission quality. (1996), Geneva, Switzerland: ITU.

ITU-T Rec. P.830: Subjective performance assessment of telephone-band and wideband digital codecs. (1996). Geneva, Switzerland: ITU.

ITU-T Rec. P.910: Subjective video quality assessment methods for multimedia applications. (2008). International Geneva, Switzerland: ITU.

Keegan, B. & Davis, M. (2006). An experimental analysis of the call capacity of IEEE 802.11b wireless local area networks for VoIP telephony. In Irish Signals and Systems Conference (pp. 283-287). IET.

Kolahi S.S., Shah M.A., & Joseph J. (2012). Performance of VoIP on IPv4 and IPv6to4 tunnel using Windows Vista and Windows 7. In: F. Gaol (Ed.), Lecture Notes in Electrical Engineering, 157: Recent progress in data engineering and internet technology (pp. 477-483). Berlin-Heidelberg, Germany: Springer.

Lara, R., Fernández, C., & Morales, C. (2016). Análisis del desempeño en un enlace descendente de redes basadas en los estándares IEEE 802.11 b, IEEE 802.11n y WDS. RECI, Revista Iberoamericana de las Ciencias Computacionales e Informática, 5(10). Retrieved from:

Mills, D. L. (1991). Internet time synchronization: The network time protocol. IEEE Transactions on Communications, 39(10), 1482-1493.

Oliveira, C. & Siqueira, M. (2006). Simultaneous VoIP calls capacity over an 802.11 Ad Hoc Network. In: International Conference on Wireless
Networks (pp. 470–476). Berlin, Heidelberg: Germany: Springer-ICST.
PC Engines (2013). ALIX 3d3 Product File. Retrieved from:

QPCOM. (2011). QP-2424G high-performance reflector grid Wi-Fi antenna. (2011). Retrieved from:

Ramírez, R. (2013). Implantación de un sistema VoIP basado en software libre con Asterisk [Master Thesis]. Universitat Oberta de Catalunya: Barcelona, España.

Ubiquiti Networks (2013). Ubiquiti super range 2. Retrieved from:

Vesga-Ferreira J.C., Granados G., & Vesga-Barrera J.A. (2016). Evaluation of the performance of a network LAN over powerline communications for the transmission of VoIP. Iteckne, 13(1), 83-95.

Villacis, D., Acosta, F., & Lara, R. (2013). Performance analysis of VoIP services over WiFi-based systems. In: IEEE Colombian Conference on Communications and Computing (COLCOM), 2013. Retrieved from:

Voyage Design and Consultants (2013). About Voyage Linux. Retrieved from:

Winstron Neweb Corp. (2011). Winstron CM9-GP. Retrieved from:

Zoiper. (2017). Softphone Zoiper 3. Retrieved from:
Original Research