DW2RDF4SDG – Ontology modeling from multi-dimensional cubes for Sustainable Development Goals

  • Flavia Serra Universidad de la República
  • Tatiana Delgado Universidad Tecnológica de La Habana
Keywords: Sustainable Development Goals, multidimensional model, data warehouse, ontology, water.


Multidimensional models and their measures regarding different dimensions are powerful instruments for decision makers. An ontology, in its basic expression as RDF, represents the reality from relationships between classes, and it is the base for linked data of the semantic Web. This work provides a basic methodology to obtain an ontology RDF from a multidimensional model of a data warehouse, capable to be aligned to other ontology of the Sustainable Developments Goals. Specifically, an approaching of alignment with the Sustainable Development Goals Interface Ontology [SDGIO] emerging by the United Nations Environmental Program [UNEP] is included. This methodology labeled as DW2RDF4SDG is instrumented for the SDG 6, aimed to ensure availability and sustainable management of water and sanitation for all.


Download data is not yet available.

Author Biographies

Flavia Serra, Universidad de la República

Engineer, Master in Computer Science a Ph.D student, also in Computer Science. She is an assistant professor at the Instituto de Ciencias de la Computación from Universidad de la República (Uruguay). Since 2004 she has participated in research projects and teaching activities in this department. Its main topics of interest are: data warehouses, geographic information systems, data quality and contexts 


Tatiana Delgado, Universidad Tecnológica de La Habana

 Engineer in Automated Systems in Management from former Instituto Politécnico José Antonio Echevarría (La Habana, Cuba). She holds a Master degree in Optimization and Decision Making, and a Ph.D., in Technical Sciences. She is a Full Professor at the Business Information Department of the Universidad Tecnológica de La Habana and Vice President of the Union de Informáticos de Cuba. Her areas of interest are spatial data infrastructures, big data, ontologies, smart cities and IT Governance 



Ait-Kadi,M. (2016). Water for development and development for water: Realizing the Sustainable Development Goals (SDGs) Vision. Aquatic Procedia, 6, 106-110. doi: 10.1016/j.aqpro.2016.06.013

Albarrak, K. M. & Sibley, E. H. (2011). A survey of methods that transform data models into Ontology models. In: IEEE International Conference on Information Reuse & Integration, Las Vegas, NV, 2011, (pp. 58-65). doi: 10.1109/IRI.2011.6009521.

Ashraf, J., Chang, E., Hussain, O.K., & Hussain, F.K. (2015). Ontology usage analysis in the ontology lifecycle: A state-of-the-art review. Knowledge-Based Systems, 80, 34-47. doi:10.1016/j.knosys.2015.02.026

Berson, A. & Smith, S. J. (1997). Data warehousing, data mining, and OLAP. New York, NY: McGraw-Hill.

Biermann, F., Kanie, N., & Kim, R.E. (2017). Global governance by goal-setting: the novel approach of the UN Sustainable Development Goals. Current Opinion in Environmental Sustainability, 26-27, 26-31. doi:10.1016/j.cosust.2017.01.010

Carpani, F. (2000). CMDM: un modelo conceptual para la especificación de bases multidimensionales [thesis]. Universidad de la República: Montevideo, Uruguay.

Cope, M. A., & Pincetl, S. (2014). Confronting standards and nomenclature in spatial data infrastructures: A case study of urban Los Angeles county geospatial water management data. IJSDIR, 9, 36-58.

Cumming, T.L, Shackleton, R., Förster, J., Dini, J., Khan, A., Gumula, M., & Kubiszewski, I. (2017). Achieving the national development agenda and the Sustainable Development Goals (SDGs) through investment in ecological infrastructure: A case study of South Africa. Ecosystem Services, 27(B), 253-260. doi:10.1016/j.ecoser.2017.05.005.

Giupponi, C. & Gain, A.K. (2017). Integrated spatial assessment of the water, energy and food dimensions of the Sustainable Development Goals. Regional Environmental Change, 17(7), 1881-1893. doi:10.1007/s10113-016-0998-z.

Golfarelli, M. & Rizzi, S. (2009). Data warehouse design: Modern principles and methodologies. New Delhi, India: McGraw-Hill.

Hoekstra, A.J, Chapagain, A.K., & van Oel, P.R. (2017). Advancing water footprint assessment research: Challenges in monitoring progress towards Sustainable Development Goal 6. Water, 9(4), 438. doi:10.3390/w9060438.

Inmon, W.H. (2005). Building the data warehouse. Indianapolis, IN: John Wiley & Sons.

Jensen,M. (2016). Sustainable Development Goals Interface Ontology: Semantics for sustainability [ppt]. Retrieved from: http://ncgia.buffalo.edu/OntologyConference/PPT/Jensen.pdf

Jha, M. K., & Chowdary, V. M. (2007). Challenges of using remote sensing and GIS in developing nations. Hydrogeology Journal, 15(1), 197-200.

Khan, S. M., Bain, R. S., Lunze, K., Unalan, T., Beshanski-Pedersen, B., Slaymaker, T., & ... Hancioglu, A. (2017). Optimizing household survey methods to monitor the Sustainable Development Goals targets 6.1 and 6.2 on drinking water, sanitation and hygiene: A mixed-methods field-test in Belize. Plos One, 12(12), 1-18. doi:10.1371/journal.pone.0189089.

Kimball, R. & Ross, M. (2002). The data warehouse toolkit: The complete guide to dimensional modelling. New York, NY: Wiley.

Kurze, C., Gluchowski, P., & Bohringer, M. (2010). Towards an ontology of multidimensional data structures for analytical purposes. In: 43rd Hawaii International Conference on System Sciences, Honolulu, HI, (pp. 1-10). doi: 10.1109/HICSS.2010.485.

Malinowski, E. & Zimnyi, E. (2008). Advanced data warehouse design: From conventional to spatial and temporal applications (data-centric systems and applications). Berlin-Heidelberg: Springer.

Moreira, J., Cordeiro, K., Campos, M. L., & Borges, M. (2014). Ontowarehousing - Multidimensional design supported by a foundational ontology: A temporal perspective, data warehousing and knowledge discovery. In:
Lecture Notes in Computer Science, 8646: Proceedings of the 16th International Conference, DaWaK 2014, (pp. 35-44). Berlin-Heidelberg: Springer.

Mugagga, F. & Nabaasa, B.B. (2016). The centrality of water resources to the realization of Sustainable Development Goals (SDG): A review of potentials and constraints on the African continent, International Soil and Water Conservation Research, 4(3), pp. 215-223. doi:10.1016/j.iswcr.2016.05.004.

Nebot,V., Berlanga, R., Pérez, J.M, Aramburu, M. J., & Pedersen, T. B. (2009). Multidimensional integrated ontologies: A framework for designing semantic data warehouses. Lecture Notes un Computer Science, 5530: Journal on Data Semantics, 13, 1-36. Berlin-Heidelberg: Springer. doi:10.1007/978-3-642-03098-7_1.

Pinilla G. & Barón, J. (2015). Inference model for dynamic classification of monographs at university level. Sistemas & Telemática, 13(35), 23-38. doi: 10.18046/syt.v13i35.2150

Prat, N., Akoka, J., & Comyn-Wattiau, I. (2012). Transforming multidimensional models into OWL-DL ontologies. In: Research Challenges in Information Science (RCIS), 2012 Sixth International Conference on. doi:10.1109/RCIS.2012.6240451. IEEE.

Spijkers, O. (2016). The Cross-fertilization between the Sustainable Development Goals and international water law. Review of European Comparative & International Environmental Law, 25(1), 39-49. doi:10.1111/reel.12152.

United Nation [UN]. (2015). Transforming our world: The 2030 Agenda of Sustainable Development [A/RES/70/1]. Retrieved from: https://sustainabledevelopment.un.org/post15/transformingourworld/publication

United Nations Environment Programme [UNEP]. (2016). Post 2015 Note #1: Integrating the three dimensions of sustainable development. Retrieved from: http://www.unep.org/unea1/docs/UNEP%20Post%202015%20Note%201%20final.pdf

United States Geologic Survey [USGS]. (2017). Maps and GIS data. Retrieved from: https://water.usgs.gov/maps.html

Wiegleb, V. (2017). Hydro-social arrangements and paradigmatic change in water governance: an analysis of the sustainable development goals (SDGs). Sustainability Science, doi:10.1007/s11625-017-0518-1.

Wiseli, D., Tanusetiawan, R., & Purnomo, F. (2017). Simulation game as a reference to smart city management. Procedia Computer Science, 116, 468-475. doi:10.1016/j.procs.2017.10.053.

Zimányi, E., & Abelló, A. (Eds.). (2016). Lecture Notes in Business Information Processing, 253: Business intelligence: 5th European Summer School, eBISS 2015, Barcelona, Spain, July 5-10, 2015. Cham, Switzerland: Springer.
Original Research