Remote supervision and control based on wireless technology to operation of central pivot irrigation machine

Authors

  • Lianet Avello Fernández Universidad Central “Marta Abreu” de las Villas
  • Eduardo Izaguirre Castellanos Universidad Central “Marta Abreu” de las Villas
  • Manuel Luciano Vidal Díaz Instituto de Investigaciones de la Caña de Azúcar (INICA)
  • Alain S. Martínez Laguardia Universidad Central “Marta Abreu” de las Villas
  • Luis Hernández Santana Universidad Central “Marta Abreu” de las Villas

DOI:

https://doi.org/10.18046/syt.v16i44.2788

Keywords:

Remote monitoring, center pivot irrigation machine, programmable logic controller, wireless technology.

Abstract

The availability of water resources in agriculture is a growing concern throughout the planet. The new technologies of automation and communications offer a set of solutions for the collection and analysis of information that make possible the decision making in the modern systems of agricultural irrigation. Important steps have been taken in the automation of irrigation systems, focused on the adequate determination of water requirements in crops, which has a positive effect on the saving of energy carriers, water resources, and agricultural productivity. In the present research we propose to perform a real-time control and monitoring system, allowing the operation and remote monitoring of irrigation machines of center pivot. For this, a programmable logic controller and wireless communication technology are used, according with the requirements and characteristics of the context of agricultural application..

Author Biographies

  • Lianet Avello Fernández, Universidad Central “Marta Abreu” de las Villas

    Automation Engineer from the Universidad Central "Marta Abreu" de Las Villas [UCLV] (Cuba, 2016). She is professor at the Department of Automation and Computational Systems (Electrical Engineering Faculty, UCLV). He belongs to the Automation, Robotics and Perception Group [GARP] since 2016, where she researches about automation of irrigation systems with applications in precision agriculture. He has participated in several national and international events related to that subject 

  • Eduardo Izaguirre Castellanos, Universidad Central “Marta Abreu” de las Villas

    Doctor in Sciences (2012) y Master in Automation (1997). He is professor at the Automation Department (Faculty of Electrical Engineering, Universidad Central "Marta Abreu" de Las Villas [UCLV]. His experience includes nine years working for the industrial sector in Cuba and more than twenty-five years as a teacher in the UCLV. He has published several papers in high impact journals and participated in international scientific events. He has won several provincial CITMA awards and one national ACC. He belongs to the Automation, Robotics and Perception Research Group [GARP], where he researches in the modeling, simulation and control of mechatronic systems and automation with applications in precision agriculture and irrigation systems. He is a reviewer of several international scientific journals

  • Manuel Luciano Vidal Díaz, Instituto de Investigaciones de la Caña de Azúcar (INICA)

    Agronomy Engineer and Doctor in Technical Sciences from the Universidad Central de Las Villas [UCLV] (Cuba). He carries out his scientific work in the specialty of irrigation, thematic area in which he has extensive experience. He worked as Director of the Sugar Cane Research Territorial Station [ETICA] of Villa Clara (Cuba). He currently works at the National Institute of Sugar Cane (INICA), as head of department and researching in issues related to precision agriculture applied to cane cultivation 

  • Alain S. Martínez Laguardia, Universidad Central “Marta Abreu” de las Villas

    Engineer in Automation and Master in Telematics from the Universidad Central "Marta Abreu" de Las Villas [UCLV] (Cuba, 2001 and 2005, respectively), with a Ph.D., in Engineering (Université libre de Bruxelles, Belgium and the UCLV, 2015). Since 2001 he is a member of the Automation and Computer Systems Department of the UCLV, where he is currently a full professor and head of the department. He teaches in several fields of the computer-programming discipline. Founder of the Automation, Robotics and Perception Group, since 2003 he has been researching the design of embedded systems and the development and application of autonomous vehicles. He has participated in several international research projects

  • Luis Hernández Santana, Universidad Central “Marta Abreu” de las Villas

    Engineer in Control-Automation and Doctor in Technical Sciences from the Universidad Central de Las Villas [UCLV] (Cuba), institution where he is a professor of the Department of Automation and Computer Systems. He is the Scientific Responsible for the Automation Robotics and Perception Group [GARP]. He conducts research about guidance and control of autonomous vehicles and in topics of precision agriculture, including: automatic irrigation systems, automation of agricultural machinery and use of unmanned aerial vehicles in crop monitoring. Also, he leads research projects related to precision agriculture 

References

Alghazali, N., Alkhaddar, R., & Hadi, H. (2013). The use of SCADA system in water resources management, management of Shatt Al-Hilla in Iraq as a case study. International Journal of Environmental Monitoring and Analysis, 1(5), 237-247. doi:10.11648/j.ijema.20130105.19

Avello-Fernández, L., Izaguirre-Castellanos, E., Martínez-La Guardia, A. S. & Hernández-Santana, L. (2017). Solución de control y supervisión remota para máquinas de riego de pivote central empleando tecnología inalámbrica [ponencia en XVII Simposio de Ingeniería Eléctrica, 2017, Universidad Central “Marta Abreu” de Las Villas.

Camargo, M. (2013). Sistema de control de riego automático mediante el monitoreo de humedad del suelo vía internet [thesis]. Universidad Autónoma de Querétaro: México. Retrieved from: http://ri.uaq.mx/bitstream/123456789/1306/1/RI000591.pdf

Capraro, F., Tosetti, S., & Vita-Serman, F. (2014). Supervisory control and data acquisition software for drip irrigation control in olive orchards: An experience in an arid region of Argentina. Acta Horticulturae, 1057, 423-429. doi: 10.17660/ActaHortic.2014.1057.53

Carranza, J. (2016). Soluciones de automatización para sistemas de regadío en caña de azúcar [thesis]. Universidad Central “Marta Abreu” de Las Villas: Santa Clara: Cuba

Chávez, J.L., Pierce, F.J., Elliott, T.V., & Evans, R.G. (2010). A remote irrigation monitoring and control system for continuous move systems. Part A: Description and development. Precision Agriculture, 11(1), 1-10. doi:10.1007/s11119-009-9109-1

Clavelo, J.L.A. & Seguí, J. P. (2012). Programación del riego de la caña de azúcar en la provincia de Villa Clara, Cuba. Revista Ciencias Técnicas Agropecuarias, 21(4), 61–66.

Dong, X., Vuran, M.C., & Irmak, S. (2013). Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad-Hoc Networks, 11(7), 1975-1987. doi:10.1016/j.adhoc.2012.06.012

González, O. (2016, May 24). La Cuba moderniza sistemas de riego. Granma [on-line]. Retrieved from: http://www.granma.cu/cuba/2016-05-24/la-cuba-moderniza-sistemas-de-riego-24-05-2016-23-05-09

Gurban, E. H. & Andreescu, G.-D. (2011). SCADA element solutions using Ethernet and mobile phone network. Intelligent Systems and Informatics, 2011 IEEE 9th International Symposium on, (pp. 303-308). IEEE

Jiménez, E. (2011). Parámetros de explotación y uniformidad de riego en la máquina de pivote central OTECH-IRRIMEC. Revista Ingeniería Agrícola, 1(1), 7-12-

Joshi, G. S., Bhujbal, N. V., & Kurkute, S. M. ()Agriculture at a Click Using PLC & SCADA. International Journal of Emerging Trends in Science and Technology, 3(5), 3928-3932. doi:10.18535/ijetst/v3i05.13

Kranz, W.L., Evans, R.G., Lamm, F.R., O’Shaughnessy, S.A., Peters, T.R. (2010). A review of center pivot irrigation control and automation technologies. In: 5th National Decennial Irrigation Conference Proceedings. American Society of Agricultural and Biological Engineers. doi:10.13031/2013.35832).

Kumar, N.D., Pramod, S., Sravani, C.H., 2013. Intelligent irrigation system. International Journal of Agricultural Science and Research (IJASR), 3(30), 23-30.

Maheshwari, C.V. & Sindha, D., 2014. Water irrigation system using controller. International Journal of Advanced Technology in Engineering and Science, 2(1), 240-249.

Navarro-Hellín, H., Martinez-del-Rincón, J., Domingo-Miguel, R., Soto-Valles, F. & Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121-131. doi:10.1016/j.compag.2016.04.003

Pasha, B.R.S. & Yogesha, D.B. (2014). Microcontroller based automated irrigation system. The International Journal of Engineering and Science (IJES), 3(7), 6-9.

Pavithra, D.S. & Srinath, M.S. (2014). GSM based automatic irrigation control system for efficient use of resources and crop planning by using an Android mobile. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 11(4), 49–55.

Pérez, J. (2010). Diseño agronómico de un sistema de pivote central en la pequeña propiedad los arenales [thesis]. Universidad Autónoma Agraria “Antonio Navarro”: Torreón, México.

Pfitscher, L.L., Bernardon, D.P., Kopp, L.M., Ferreira, A.A.B., Heckler, M.V.T., Thome, B.A., Montani, P.D.B., Fagundes, D.R. (2011). An automated irrigation system for rice cropping with remote supervision. In: 2011 International Conference on Power Engineering, Energy and Electrical Drives. IEEE. doi:10.1109/PowerEng.2011.6036452

Reductores CUÑAT. (2017). Cuñat agrocaja: pivots de riego. Retrieved from: www.reductorescunat.es/pivots.html

Reinke Irrigation. (2017). Reinke pivots. Retrieved from: skoneirrigation.com/reinke-pivots/

Rodríguez, M. & López, T. (2014). Comportamiento de la zona radical activa del banano en un ferrasol bajo riego por goteo superficial y subsuperficial. Revista Ciencias Técnicas Agropecuarias, 23(3), 5-10.

Rodríguez, M. & Puig, O. (2012). Comportamiento hidráulico de los sistemas de riego por goteo superficial y sub superficial. Revista Ciencias Técnicas Agropecuarias, 21(3), 23-28.

Santos, L., De Juan, J., Picornell, M., Tarjuelo, J., 2010. El riego y sus tecnologías. Albacete, España: Centro Regional de Estudios del Agua (CREA), Universidad de Castilla-La Mancha.

Schneider Electric. (2017). Automatización de máquinas y procesos. Rueil-Malmaison, France: Schneider Electric.

Smith, R.J., Baillie, J.N., McCarthy, A.C., Raine, S.R., & Baillie, J.N. (2011). Review of precision irrigation technologies and their application [NCEA Publication 1003017/1]. Toowoomba, Australia: National Centre for Engineering in Agriculture University of Southern Queensland Toowoomba

Tarjuelo, J.M. (2005). El riego por aspersión y su tecnología. Madrid, España: Mundi-Prensa.

United States Department of Agriculture [USDA] (1991). National Engineering Handbook. Washington, DC: USDA.

Valley Irrigation. (2017). Irrigation products leading the industry with advanced irrigation systems. Retrieved from: http://www.valleyirrigation.com/valley-irrigation/us/irrigation-products

Vázquez, R.J. & Solano, O.J., 2013. Determinación del peligro por sequía agrícola. Revista Cubana de Meteorología, 19(2), 154-168.

Downloads

Published

2018-02-05

Issue

Section

Original Research