Towards an automatic detection system of sports talents: an approach to Tae Kwon Do

  • Román Alcides Lara Cueva Universidad de las Fuerzas Armadas, Sangolquí
  • Alexis Darío Estévez Salazar Universidad de las Fuerzas Armadas, Sangolquí
Keywords: Tae Kwon Do; machine learning; wrapper; embedded; decision tree; support vector machine.


Tae Kwon Do is a Korean martial art included as an Olympic sport, where several tools have been developed from the engineering point of view,mainly focused on improving the capacity of the athletes. Nevertheless, there is a breach in the selection process of high performance athletes. For this reason, this research was focused on developing a system based on the information of the classification for the athletes in the Tae Kwon Do Ecuadorian Federation by using the wrapper and embedded modes and the Decision Tree and Support Vector Machines machine learning algorithms. These algorithms and modes were used to assess the different factors considered in this classification. The main contribution of this work is to provide a support system for the selection of these athletes.


Download data is not yet available.

Author Biographies

Román Alcides Lara Cueva, Universidad de las Fuerzas Armadas, Sangolquí

Ph.D Engineer in Electronics and Telecommunications from the Escuela Nacional Politécnica (Quito-Ecuador, 2001); Master in Wireless Systems and Related Technologies from the Politecnico di Torino (Italy, 2005); Master and PhD., in Telecommunication Networks for Developing Countries from the Universidad Rey Juan Carlos (Madrid-España, 2010/2015). He joined the Department of Electrical Engineering of the Universidad de las Fuerzas Armadas [ESPE] (Sangolquí-Ecuador) in 2002 and is a full professor since 2005. He has participated in more than ten research projects developed with public funds (five of them as main researcher). His main areas of interests are: digital signal processing, smart cities, wireless systems and automatic learning theory.

Alexis Darío Estévez Salazar, Universidad de las Fuerzas Armadas, Sangolquí

Candidate to Engineer in Electronics and Telecommunications at the Universidad de las Fuerzas Armadas [ESPE] (Sangolquí-Ecuador). In 2017 he joined to the Sistemas Inteligentes research group as assistant researcher. He completed the Cisco Certified Network Associate Fast Track courses and is candidate to CISCO certification. Actually is black belt –first dan– in Tae Kwon Do and coach of formative schools in this sport. His main areas of interest in research are machine learning and design of low cost technology related to sports.


Alderson, J. (2015). A markerless motion capture technique for sport performance analysis and injury prevention: Toward a ‘big data’, machine learning future. Journal of Science and Medicine in Sport, 19(3), e79. doi: 10.1016/j.jsams.2015.12.192

Badr, H., Abdelkarim, M., Hanane, E., & Mohammed, E. (2014). A comparative study of decision tree ID3 and C4.5. International Journal of Advanced Computer Science and Applications, 2014. doi: 10.14569/SpecialIssue.2014.040203

Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1), 245 - 271. doi:

Brotons, J. (2005). Propuesta de un modelo integral para el proceso de detección, selección y desarrollo de talentos deportivos a largo plazo. Revista Digital, 10(91). Retrieved from:

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3), 389-422.

Kong, Y., Wei, Z., & Huang, S. (2018). Automatic analysis of complex athlete techniques in broadcast taekwondo video. Multimedia Tools and Applications, 77(11), 13643-13660.

Kotsiantis, S. B. (2013). Decision trees: A recent overview. Artificial Intelligence Review, 39(4), 261-283.

Kwon, D. Y. (2013). A study on taekwondo training system using hybrid sensing technique. Retos, 16(12), 1439-1445.

Kwon, D. Y. & Gross, M. (2005). Combining body sensors and visual sensors for motion training. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, (pp. 94–101). New York, NY: ACM.

Langley, P. (1994). Selection of relevant features in machine learning. In: Proceedings of the AAAI Fall Symposium on Relevance (pp. 140-144). AAAI.

Lara, R. (2015). Real-time volcanic monitoring using wireless sensor networks [doctoral dissertation). Universidad Rey Juan Carlos: Madrid, España.

Liu, C., Wang, W., Zhao, Q., Shen, X., & Konan, M. (2017). A new feature selection method based on a validity index of feature subset. Pattern Recognition Letters, 92(C), 1-8. doi: 10.1016/j.patrec.2017.03.018

Muscolo, G. G., & Recchiuto, C. T. (2016, September). T.P.T. a novel taekwondo personal trainer robot. Robot Auton. Syst., 83(C), 150-157.

Parikh, K. S., & Shah, T. P. (2016). Support vector machine – a large margin classifier to diagnose skin illnesses. Procedia Technology, 23, 369-375.

Scholkopf, B., & Smola, A. (2002). Learning with kernels. Cambridge, MA: MIT.

Shi, L., Duan, Q., Ma, X., & Weng, M. (2012). The research of support vector machine in agricultural data classification. In: D. Li & Y. Chen (Eds.), Computer and Computing Technologies in Agriculture (pp. 265-269). Berlin-Heidelberg, Germany: Springer.

Suto, J., Oniga, S., & Sitar, P. P. (2016, May). Comparison of wrapper and filter feature selection algorithms on human activity recognition. In: 2016 6th International Conference on Computers Communications and Control (ICCCC), (pp. 124-129). doi: 10.1109/ICCCC.2016.7496749

Trejo, O. & Miramá, V. (2018). Machine learning algorithms for inter-cell interference coordination. Sistemas & Telemática, 16(46), 37-57. doi:10.18046/syt.v16i46.3034

Urcuqui, C. & Navarro, A. (2016). Framework for malware analysis in Android. Sistemas & Telemática, 14(37), 45-56.

Valero, C. (2017). Aplicación de métodos de aprendizaje automático en el análisis y la predicción de resultados deportivos. Retos, 34, 377-382.

Vergara, J., Martínez, M. C., & Caicedo, O. (2017). A benchmarking of the efficiency of supervised ML algorithms in the NFV traffic classification. Sistemas & Telemática, 15(42), 47-67. doi:10.18046/syt.v15i42.2539

Zelic, I., Kononenko, I., Lavrac, N., & Vuga, V. (1997). Induction of decision trees and bayesian classification applied to diagnosis of sport injuries. Journal of Medical Systems, 21(6), 429-444.

Zhang, Y. (2012). Support vector machine classification algorithm and its application. In C. Liu, L. Wang, & A. Yang (Eds.), Information Computing and Applications, (pp. 179-186). Berlin-Heidelberg, Germany: Springer.

Zhong, M., Hung, J., Yang, Y., & Huang, C. (2016). GA-SVM classifying method applied to dynamic evaluation of taekwondo. In: 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE), (pp. 534-537). doi: 10.1109/ICAMSE.2016.7840191

Original Research