Inteligencia colectiva: enfoque para el análisis de redes

  • Claudia Eugenia Toca Torres Profesora de la Facultad de Finanzas, Gobierno y Relaciones Internacionales de la Universidad Externado de Colombia, Bogotá
Palabras clave: Inteligencia colectiva, Autoorganización, Red empresarial

Resumen

La revisión de la literatura anglosajona producida durante los últimos 16 años sobre inteligencia colectivay otras metaheurísticas permite la construcción del estado del arte de 3 de sus características: autoor-ganización, flexibilidad y robustez. Dicho recorrido teórico aporta a la comprensión de las posibilidadesde aplicación de la inteligencia colectiva no solo en especies sino en niveles de vida superiores comocomunidades y ecosistemas. Dado que en el largo plazo la flexibilidad y la robustez emergen de laautoorganización, se sugiere el estudio de los asuntos de esta última característica en redes empresaria-les (información, comunicación, liderazgo, potencial creativo, pertenencia, autonomía, acción colectiva,cooperación, interacción, libertad y diversidad), así como el análisis de redes soportado en grafos eindicadores.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Claudia Eugenia Toca Torres, Profesora de la Facultad de Finanzas, Gobierno y Relaciones Internacionales de la Universidad Externado de Colombia, Bogotá

Citas

Amigoni, F. y Schiaffonati, V. (2008). A multiagent approach to modelling complex phenomena. Foundations of Science, 13, 113–125.

Andriani, P., & Passiante, G. (Eds.). (2004). Complexity Theory and the Management of Networks: Proceedings of the Workshop on Organisational Networks as distributed Systems of Knowledge. Londres: Imperial College Press.

Axelrod, R. (2004). La complejidad de la cooperación. Modelos de cooperación y colaboración basados en los agentes. Buenos Aires: Fondo de Cultura Económica.

Biswas, S. y Mahapatra, S. S. (2008). Modified particle swarm optimization for solving machine-loading problems in flexible manufacturing systems. International Journal of Advanced Manufacturing Technology, 39(9/10), 931–942.

Bonabeau, E., Dorigo, M. y Théraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial Systems. New York: Oxford University Press.

Bonabeau, E. y Meyer, C. (2001). Swarm intelligence: A whole new way to think about business. Harvard Business Review, 79(5), 107–114.

Bonabeau, E. y Théraulaz, G. (2008). Swarm smarts. Scientific American Special Edition, 18(1), 40–47.

Camorlinga, S. y Barkerb, D. (2006). A complex adaptive system based on squirrels behaviors for distributed resource allocation. Web Intelligence and Agent Systems: An International Journal, 4, 1–23.

Castelfranchi, C., Piunti, M. y Ricci, A. (2012). AmI Systems as agent-based mirror worlds: Brindging humans and agents through stigmergy. In T. Bosse (Ed.), Agents and Ambient Intelligence. Amsterdam, NLD: IOS Press.

Chan, F. T. y Chan, H. K. (2004). A new model for manufacturing supply chain networks: A multiagent approach. Proceedings of the Institution of Mechanical Engineers, 218(B), 443–454.

Cheol-Jae, Y. y Akira, F. (2008). Network based multi agent simulation analysis. Journal of Asian Architecture and Building Engineering, 7(2), 301–308.

Conley, D. S. (2009). Writing like a flock. Social Identities, 15(4), 447–461.

Dayyani, B. (2009). Structured analytics: The creation of the Intelligent Organization. Proceedings of World Academy of Science, Engineering and Technology, 38, 973–988.

Doak, J. y Karadimitriou, N. (2007). (Re)development complexity and networks: A framework for research. Urban Studies, 44(2), 209–229.

Dorigo, M. y Stützle, T. (2002). The ant colony optimization metaheuristic: Algorithms, applications and advances. In F. Glover y G. A. Kochenberger (Eds.), Handbook of Metaheuristics. Secaucus, NJ: Kluwer Academic Publishers.

Dorigo, M. y Stützle, T. (2004). Ant Colony Optimization. Cambridge, MA: MIT Press.

Duarte, A., Pantrigo, J. J. y Gallego, M. (2008). Meta-heurísticas. Madrid: Dykinson.

Dugatkin, L. A. (1997). Cooperation Among Animals: An Evolutionary Perspective. Cary, NC: Oxford University Press.

Duit, A. y Galaz, V. (2008). Governance and complexity. Emerging issues for governance theory. Governance: An International Journal of Policy, Administration and Institutions, 21(3), 311–335.

Fischer, K., Müller, J. P. y Pischel, M. (1996). Cooperative transportation scheduling: An application domain for Distributed Artificial Intelligence DAI. Applied Artificial Intelligence, 10, 1–33.

Fisher, L. (2009). Perfect Swarm: The Science of Complexity in Everyday Life. New York: Basic Books.

Gallopín, G. (2000). Ecología y ambiente. In E. Leff (Ed.), Los problemas del conocimiento y la perspectiva ambiental del desarrollo. México D.F: Siglo XXI.

Gao, Q., Lou, X. y Yang, S. (2005). Stigmergic cooperation mechanism for shop floor control system. International Journal of Advanced Manufacturing Technology, 25, 743–753.

Guo, Q. y Zhang, M. (2009). Multiagent-based scheduling optimization for Intelligent Manufacturing System. International Journal of Advanced Manufacturing Technology, 44, 595–605.

Holland, O. y Melhuish, C. (1999). Stigmergy, self-organization, and sorting in collective robotics. Artificial Life, 5, 173–202.

In-Jae, J. y Leon, V. J. (2002). Decision-making and cooperative interaction via coupling agents in organizationally distributed systems. IIE Transactions, 3, 789–802.

In-Jae, J. y Leon, V. J. (2005). A single-machine distributed scheduling methodology using cooperative interaction via coupling agents. IIE Transactions, 37, 137–152.

Jacob, C. J., Hushlak, G., Boyd, J. E., Nuytten, P., Sayles, M. y Pilat, M. (2007). SwarmArt: Interactive Art from Swarm Intelligence. Leonardo, 40(3), 248–254.

Karsai, I. (1999). Decentralized control of construction behavior in paper wasp: An overview of the stigmergy approach. Artificial Life, 5, 117–136.

Kaur, A. y Goyal, S. (2011). A survey on the applications of bee colony optimization techniques. International Journal on Computer Science & Engineering, 3(8), 3037–3046.

Kim, D. H. (2006). A swarm system design based on a modified particle swarm algorithm for a self-organizing scheme. Advanced Robotics, 20(8), 913–932.

Lemouari, A. y Benmohamed, M. (2008). Self organization and emergence: Overview and examples. International Review on Computers and Software, 3(1), 20–30.

Liang, T. Y. (2004). Intelligence strategy: The evolutionary and co-evolutionary dynamics of intelligent human organizations and their interacting agents. Human Systems Management, 23(2), 137–149.

Lim, A., Rodrigues, B. y Zhang, X. (2004). Metaheuristics with local search techniques for retail shelf-space optimization. Management Science, 50(1), 117–131.

Martinoli, A. (2001). Collective complexity out of individual simplicity. Artificial Life, 7, 315–319.

Miller, P. (2007). Swarm theory. National Geographic, 212(1), 1–17.

Morc¸ öl, G. y Wachhaus, A. (2009). Network and complexity theories: A comparison and prospects for a synthesis. Administrative Theory & Praxis, 31(1), 44–58.

Ng, K. H. (2007). Political context, policy networks and policy change: The complexity of transition in Hong Kong. The Pacific Review, 20(1), 101–126.

Ojeda, G. J. (2009). La cooperación empresarial como estrategia de las pymes del sector ambiental. Estudios Gerenciales, 25(10), 39–61.

Peters, K., Johansson, A., Dussutour, A. y Helbing, D. (2006). Analytical and numerical investigation of ant behavior under crowded conditions. Advances in Complex Systems, 9(4), 337–352.

Rodríguez, A., Grushin, A. y Reggia, J. A. (2007). Swarm Intelligence Systems using guided self-organization form collective problem solving. Advances in Complex Systems, Supplement, 10(1), 5–34.

Shafee, F. (2010). Organization and complexity in a nested hierarchical spin-glass like social space. Electronic Journal of Theoretical Physics, 7(24), 93–130.

Skorupski, P., Spaethe, H. y Chittka, L. (2006). Visual search and decision making in bees: Time, speed and accuracy. International Journal of Comparative Psychology, 19, 342–357.

Smith, Ch. R., Toth, A., Suarez, A. y Gene, E. R. (2008). Genetic and genomic analyses of the division of labour in insect societies. Nature Reviews Genetics, 9, 735–748.

Thanh, N. (2008). Inconsistency of knowledge and collective intelligence. Cybernetics and Systems: An International Journal, 39, 542–562.

Théraulaz, G. y Bonabeau, E. (1999). A brief history of stigmergy. Artificial Life, 5, 97–116.

Tripet, F. y Nonacs, P. (2004). Foraging for work and age-based polyethism: The roles of age and previous experience on task choice in ants. Ethology, 110, 863–877.

Tumer, K. y Agogino, A. (2009). Multiagent learning for black box system reward functions. Advances in Complex Systems, 12(4-5), 475–492.

Tumer, K. y Khani, N. (2009). Learning form actions not taken in multiagent systems. Advances in Complex Systems, 12(4-5), 455–473.

Varga, A., Chira, C. y Dumitrescu, D. (2009). A multi-agent approach to solving dynamic travelling salesman problem. American Institute of Physics Conference Proceedings, 1117(1), 189–197.

Velázquez A., Aguilar N. (2005). Manual introductorio al análisis de redes sociales. México D.F. [consultado 22 Nov 2012]. Disponible en: http://revista-redes.rediris.es/webredes/talleres/ManualARS.pdf.

Vesterby, V. (2008). Measuring complexity: Things that go wrong and how to get it right. Emergence: Complexity and Organization, 10(2), 90–102.

Wilson, E. O. (2008). One giant leap: How insects achieved altruism and colonial life. BioScience, 58(1), 17–25.

Wood, Z. y Galton, A. (2009). A taxonomy of collective phenomena. Applied Ontology, 4, 267–292.

Publicado
2014-07-15
Cómo citar
Toca Torres, C. E. (2014). Inteligencia colectiva: enfoque para el análisis de redes. Estudios Gerenciales, 30(132), 259-266. https://doi.org/10.1016/j.estger.2014.01.014
Sección
Artículo de investigación