Referencias

Almeida, A., Loy, A., & Hofmann, H. (2018). ggplot2 compatible quantile-quantile plots in r. In The R Journal (No. 2; Vol. 10, pp. 248–261). https://doi.org/10.32614/RJ-2018-051
Alonso, J. C. (2020). Herramientas del Business Analitycs en R: Análisis de Componentes Principales para resumir variables (Icesi Economics Lecture Notes No. 18188). Universidad Icesi. https://ideas.repec.org/p/col/000559/018188.html
Alonso, J. C. (2022). Empezando a transformar bases de datos con r y dplyr. Universidad Icesi. https://doi.org/10.18046/EUI/bda.h.2
Alonso, J. C. (2024). Introducción al modelo clásico de regresión para científico de datos en r. Universidad Icesi. https://doi.org/https://doi.org/10.18046/EUI/bda.h.4
Alonso, J. C., & Arboleda, A. M. (2025). Introducción al análisis de canastas de compra para analytics translators y científicos de datos (empleando r). Universidad Icesi. https://doi.org/https://doi.org/10.18046/EUI/bda.h.7
Alonso, J. C., & Hoyos, C. C. (2025). Una introducción a los modelos de clasificación empleando r. Universidad Icesi. https://doi.org/https://doi.org/10.18046/EUI/bda.h.5
Alonso, J. C., Hoyos, C. C., & Largo, M. F. (2025). Una introducción a los modelos de clústering empleando r. Universidad Icesi. https://doi.org/https://doi.org/10.18046/EUI/bda.h.6
Alonso, J. C., & Largo, M. F. (2023). Empezando a visualizar datos con r y ggplot2. (2. ed.). Universidad Icesi. https://doi.org/10.18046/EUI/bda.h.3.2
Alonso, J. C., & Ocampo, M. P. (2022). Empezando a usaR: Una guía paso a paso. Universidad Icesi. https://doi.org/doi.org/10.18046/EUI/bda.h.1
Alonso, J. C., & Serrano, E. (2025). Del dato a la decisión: Business analytics para analytics translators. Universidad Icesi. https://doi.org/in press
Benford, F. (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, 551–572.
Benford, F. (2012). The Law of Anomalous Numbers. Proceedings of the American Philosophical Society, 78(4), 551–572.
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., Arx, S. von, Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N., Chen, A., Creel, K., Davis, J. Q., Demszky, D., … Liang, P. (2022). On the opportunities and risks of foundation models. https://arxiv.org/abs/2108.07258
Bougeard, S., & Dray, S. (2018). Supervised multiblock analysis in R with the ade4 package. Journal of Statistical Software, 86(1), 1–17. https://doi.org/10.18637/jss.v086.i01
Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-based local outliers. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 93–104. https://doi.org/10.1145/342009.335388
Cabana, E., Lillo, R. E., & Laniado, H. (2021). Multivariate outlier detection based on a robust mahalanobis distance with shrinkage estimators. Statistical Papers, 62, 1583–1609.
Casas, P. (2024). funModeling: Exploratory data analysis and data preparation tool-box. https://CRAN.R-project.org/package=funModeling
Chalmers, R. P., & Flora, D. B. (2015). Faoutlier: An r package for detecting influential cases in exploratory and confirmatory factor analysis. Applied Psychological Measurement, 39(7), 573–574. https://doi.org/10.1177/0146621615597894
Chen, Y., Ruys, W., & Biros, G. (2020). KNN-DBSCAN: A DBSCAN in high dimensions. arXiv Preprint arXiv:2009.04552.
Cinelli, C. (2018). Benford.analysis: Benford analysis for data validation and forensic analytics. https://CRAN.R-project.org/package=benford.analysis
Cortes, D. (2021). Revisiting randomized choices in isolation forests. https://arxiv.org/abs/2110.13402
Cortes, D. (2024). Isotree: Isolation-based outlier detection. https://CRAN.R-project.org/package=isotree
D’Orazio, M. (2022). univOutl: Detection of univariate outliers. https://CRAN.R-project.org/package=univOutl
Darrouzet-Nardi, A. (2018). Hotspots: Hot spots. https://CRAN.R-project.org/package=hotspots
Dinno, A. (2018). Paran: Horn’s test of principal components/factors. https://CRAN.R-project.org/package=paran
Dixon, W. J. (1950). Analysis of extreme values. The Annals of Mathematical Statistics, 21(4), 488–506.
Dixon, W. J. (1951). Ratios involving extreme values. The Annals of Mathematical Statistics, 22(1), 68–78.
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd, 96, 226–231.
EStimator, D. (1999). A fast algorithm for the minimum covariance. Technometrics, 41(3), 212.
Filzmoser, P. (2023). Chemometrics: Multivariate statistical analysis in chemometrics. https://CRAN.R-project.org/package=chemometrics
Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third). Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11(1), 1–21.
Guha, S., Mishra, N., Roy, G., & Schrijvers, O. (2016). Robust random cut forest based anomaly detection on streams. International Conference on Machine Learning, 2712–2721.
Hahsler, M., Piekenbrock, M., & Doran, D. (2019). dbscan: Fast density-based clustering with R. Journal of Statistical Software, 91(1), 1–30. https://doi.org/10.18637/jss.v091.i01
Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69(346), 383–393.
Hariri, S., Kind, M. C., & Brunner, R. J. (2019). Extended isolation forest. IEEE Transactions on Knowledge and Data Engineering, 33(4), 1479–1489.
Harrell, F. E., & Davis, C. E. (1982). A new distribution-free quantile estimator. Biometrika, 69(3), 635–640. https://doi.org/10.1093/biomet/69.3.635
Hill, T. P. (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science, 10(4), 354–363. https://doi.org/10.2307/2246134
Hofmann, H. (1994). Statlog (German Credit Data). UCI Machine Learning Repository.
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447
HSN-Consultants. (2021). Nilson report: Card fraud worldwide. HSN Consultants, Inc. https://nilsonreport.com/upload/content_promo/NilsonReport_Issue1209.pdf
Hubert, M., & Vandervieren, E. (2008). An adjusted boxplot for skewed distributions. Computational Statistics & Data Analysis, 52(12), 5186–5201.
Joenssen, D. W. (2015). BenfordTests: Statistical tests for evaluating conformity to benford’s law. https://CRAN.R-project.org/package=BenfordTests
Kassambara, A. (2017). Practical guide to cluster analysis in r: Unsupervised machine learning (Vol. 1). Sthda.
Kassambara, A., & Mundt, F. (2020). Factoextra: Extract and visualize the results of multivariate data analyses. https://CRAN.R-project.org/package=factoextra
Komsta, L. (2022). Outliers: Tests for outliers. https://CRAN.R-project.org/package=outliers
Kossovsky, A. E. (2021). On the Mistaken Use of the Chi-Square Test in Benford’s Law. Stats, 4(2), 419–453. https://doi.org/10.3390/stats4020027
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: A package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01
Leys, C., Klein, O., Dominicy, Y., & Ley, C. (2018). Detecting multivariate outliers: Use a robust variant of the mahalanobis distance. Journal of Experimental Social Psychology, 74, 150–156. https://doi.org/10.1016/j.jesp.2017.09.011
Lin, W. (2024). Mt: Metabolomics data analysis toolbox. https://CRAN.R-project.org/package=mt
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. 2008 Eighth Ieee International Conference on Data Mining, 413–422.
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2010a). On detecting clustered anomalies using sciforest. Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part II 21, 274–290.
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2010b). On detecting clustered anomalies using SCiForest. In J. L. Balcázar, F. Bonchi, A. Gionis, & M. Sebag (Eds.), Machine learning and knowledge discovery in databases (pp. 274–290). Springer Berlin Heidelberg.
Liu, F., Ting, K., & Zhou, Z. (2010). Can isolation-based anomaly detectors handle arbitrary multi-modal patterns in data. Technical Report.
Lucas, A. (2022). Amap: Another multidimensional analysis package. https://CRAN.R-project.org/package=amap
Maechler, M., Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M., Verbeke, T., Koller, M., Conceicao, E. L. T., & Anna di Palma, M. (2024). Robustbase: Basic robust statistics. http://robustbase.r-forge.r-project.org/
Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Sciences (Calcutta), 2, 49–55.
Mclachlan, G. (1999). Mahalanobis distance. Resonance, 4, 20–26. https://doi.org/10.1007/BF02834632
Millard, S. P. (2013). EnvStats: An r package for environmental statistics. Springer. https://www.springer.com
Mukhamediev, R. I., Popova, Y., Kuchin, Y., Zaitseva, E., Kalimoldayev, A., Symagulov, A., Levashenko, V., Abdoldina, F., Gopejenko, V., Yakunin, K., et al. (2022). Review of artificial intelligence and machine learning technologies: Classification, restrictions, opportunities and challenges. Mathematics, 10(15), 2552. https://doi.org/10.3390/math10152552
Nenadic, O., & Greenacre, M. (2007). Correspondence analysis in r, with two- and three-dimensional graphics: The ca package. Journal of Statistical Software, 20(3), 1–13. http://www.jstatsoft.org
Newcomb, S. (1881). Note on the Frequency of Use of the Different Digits in Natural Numbers. American Journal of Mathematics, 4(1), 39–40. http://www.jstor.org/stable/2369148
Nigrini, M. J. (2012). Benford’s Law: Applications for forensic accounting, auditing, and fraud detection (Vol. 586). John Wiley & Sons.
R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
R Core Team. (2025). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algorithms for mining outliers from large data sets. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 427–438.
Rorabacher, D. B. (1991). Statistical treatment for rejection of deviant values: Critical values of dixon’s" q" parameter and related subrange ratios at the 95% confidence level. Analytical Chemistry, 63(2), 139–146.
Rosner, B. (1975). On the detection of many outliers. Technometrics, 17(2), 221–227.
Rousseeuw, P. (1984). Least median of squares regression. Journal of The American Statistical Association - J AMER STATIST ASSN, 79, 871–880. https://doi.org/10.1080/01621459.1984.10477105
Rousseeuw, P. J., & Van Zomeren, B. C. (1990). Unmasking multivariate outliers and leverage points. Journal of the American Statistical Association, 85(411), 633–639.
Rousseeuw, P., & Zomeren, B. (1990). Unmasking multivariate outliers and leverage points. Journal of The American Statistical Association - J AMER STATIST ASSN, 85, 633–639. https://doi.org/10.1080/01621459.1990.10474920
Tietjen, G. L., & Moore, R. H. (1972). Some grubbs-type statistics for the detection of several outliers. Technometrics, 14(3), 583–597.
Tukey, J. W. (1970). Exploratory data analysis - preliminary edition. Addison-Wesley.
Tukey, J. W. (1977). Exploratory data analysis (Vol. 2). Addison-Wesley Series in Behavioral Science: Quantitative Methods.
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (Fourth). Springer. https://www.stats.ox.ac.uk/pub/MASS4/
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H., François, R., Henry, L., & Müller, K. (2021). Dplyr: A grammar of data manipulation. https://CRAN.R-project.org/package=dplyr
William Revelle. (2023). Psych: Procedures for psychological, psychometric, and personality research. Northwestern University. https://CRAN.R-project.org/package=psych
Yutani, H. (2022). Gghighlight: Highlight lines and points in ’ggplot2’. https://CRAN.R-project.org/package=gghighlight